Catalysis Science of Bulk Mixed Metal Oxide Catalysts: An Operando IR-TPSR Spectroscopic Study

Kamalakanta Routray and <u>Israel E. Wachs</u>* Operando Molecular Spectroscopy and Catalysis Laboratory Department of Chemical Engineering Lehigh University, Bethlehem, PA 18015 (USA) *iew0@lehigh.edu

Introduction

Even though bulk mixed metal oxides find wide application in catalysis, there has still been a lack of fundamental understanding of how bulk mixed oxide catalysts function in the literature [1]. In order to obtain insights into how bulk mixed metal oxides function, the model bulk FeVO₄ catalyst system was investigated for CH₃OH oxidation to HCHO. Special emphasis was placed on obtaining surface information by employing *operando* IR-temperature programmed surface reaction (TPSR) spectroscopy with the CH₃OH chemical probe molecule.

Materials and Methods

The bulk FeVO₄ and supported 4% V₂O₅/Fe₂O₃ were prepared by co-precipitation and incipient impregnation methods respectively [2, 3]. Bulk V₂O₅ was synthesized by thermal decomposition of NH₄VO₃ in flowing air at 300 °C for 4h.

Results and Discussion

The *in situ* IR spectra for CH₃OH chemisorbed on bulk V_2O_5 , Fe₂O₃, FeVO₄ and supported 4% V2O5/Fe2O3 were collected after adsorbing methanol at 100 °C. Chemisorption of CH₃OH on Fe₂O₃ at 100 °C gives rise to two strong IR peaks at ~ 2924 and 2820 cm⁻¹ characteristic of the C-H stretches for surface methoxy (CH₃O*) species and bands at ~2950 and ~2850 cm⁻¹ characteristic of the C-H stretches for intact methanol (CH₃OH*) species on Lewis acid sites. Operando IR-TPSR spectroscopy revealed that the intact surface CH₃OH* species desorbs as CH_3OH (Tp~188 °C) and that the surface CH_3O^* species reacts to desorb as dimethyl ether (Tp~242°C). For bulk V₂O₅, methanol adsorption also results in both intact CH₃OH* (2962 and 2854 cm⁻¹) and surface CH₃O* species (2930 and 2828 cm⁻¹), with the surface methoxy species giving rise to a much a stronger IR signal compared to intact surface CH₃OH* species. Both surface species, however, give rise to HCHO (Tp~201 °C) from bulk V₂O₅. Bulk FeVO₄ and supported 4% V₂O₅/Fe₂O₃ also form both intact CH₃OH* (2956 and 2828 cm^{-1}) and surface CH₃O* (2930 and 2828 cm⁻¹), with the surface methoxy species being more dominant. During operando IR-TPSR spectroscopy (shown in Figures 1 and 2), the bulk FeVO₄ and 4% V₂O₅/Fe₂O₃ catalysts both exclusively yield formaldehyde with Tp~201 °C and ~215 °C, respectively.

The methanol chemical probe molecule reacts with surface redox, acidic and basic sites to produce formaldehyde, dimethyl ether (DME) and carbon dioxide, respectively. The formation of DME and only small amounts of HCHO and CO₂ from Fe₂O₃ during CH₃OH-TPSR reveals that the Fe₂O₃ primarily possesses surface acidic sites. In contrast, the vanadia-containing catalysts almost exclusively yield HCHO as the reaction product indicating that they contain surface redox sites. The very similar Tp values, 201-215 °C, for the V-containing catalysts

suggest that the bulk FeVO₄ catalyst is surface enriched with VOx. This is also supported by the CH₃OH-IR spectra only showing the presence of surface V-OCH₃ species on bulk FeVO₄.

Figure 1. *Operando* IR-TPSR spectra from CH₃OH chemisrobed on bulk FeVO₄ in flowing He.

Figure 2. *Operando* MS-TPSR spectra from CH₃OH chemisorbed on bulk FeVO₄ in flowing He.

Significance

New insights about the catalytic contributions of the bulk and surface of bulk mixed metal oxide catalysts were obtained for methanol oxidation by the Fe-V-O system with *operando* IR-TPSR spectroscopy studies. The catalyst *surface* sites are responsible for the nature of the methanol surface species, surface CH_3O^* or intact CH_3OH^* , and their reaction products (HCHO or DME). The presence of surface redox sites for the V-containing catalysts primarily results in the formation of HCHO. Furthermore, since both the monolayer 4% V_2O_3/Fe_2O_3 and bulk FeVO₄ catalysts give comparable results this suggests that it is the *surface* characteristics of bulk mixed metal oxide catalysts (surface sites, surface intermediates and their reaction pathways) that dominate the catalytic properties of bulk mixed metal oxide catalysts.

References

- 1. Wachs, I.E. Catal. Today, 100, 79 (2005).
- 2. Wachs, I.E., Briand, L.E., U.S. Patent 7,193,117.
- Gao, X., Bare, S.R., Weckhuysen, B.M., Wachs, I.E., J. Phys. Chem. B 102, 10842 (1998).