Spatial Resolution of Reactant Species Consumption in Diesel Oxidation Catalysts

William Epling^{1*}, Karishma Irani¹, Peter Hou¹ and Richard Blint²

¹ University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)

²General Motors R&D Center, General Motors, Warren, Michigan 48090-9055 (USA)

*wepling@uwaterloo.ca

Introduction

There is growing interest in more widespread use of lean-burn engines, such as the diesel engine, in passenger vehicles. Such a switch will lead to decreased fuel consumption and a coincident decrease in CO_2 emissions, both of increasing concern. The remaining issue is NO_X and particulate emissions. For this reason, there has been substantial research directed at diesel and lean-burn gasoline exhaust emissions control catalysts. A common catalyst in many proposed systems is a diesel oxidation catalyst (DOC). DOCs perform a range of functions in an integrated emission control system, including oxidation of exhaust hydrocarbons and carbon monoxide, and conversion of NO to NO_2 . The latter oxidation reaction is desired for optimum performance in downstream devices; the 'fast' reaction pathway in selective catalytic reduction catalysis requires 1:1 $NO:NO_2$, NO_2 is trapped more readily by NO_X storage/reduction catalysts and soot is burned at a lower temperature with NO_2 as the oxidant relative to O_2 . Furthermore, DOCs can be used to initiate activity in downstream devices by providing heat to the exhaust gases via exothermic reactions with added fuel or fuel-derived hydrocarbons.

While there are DOC global reaction mechanisms available, validation of these mechanisms is traditionally accomplished by simply predicting/matching the measured catalyst out species compositions. A more challenging indicator of the global reaction mechanism validity is the accurate prediction of the species concentration profiles along the catalyst channel. The overall scope of this project is directed at evaluating DOC global mechanisms based on measured species profiles for steady-state reactor experiments. This presentation will show experimentally measured distributions of gas-phase species along the axial direction of the catalyst with focus on characterizing key DOC reactions.

Materials and Methods

Spatially resolved capillary-inlet mass spectrometry (SpaciMS) [1,2] was used to measure the gas-phase species within a model, monolith-supported Pt-Pd/Al₂O₃ model diesel oxidation catalyst. Spatially resolved measurements were made using a Hiden mass spectrometer during temperature ramps with the capillary positions fixed, as well as at a constant upstream temperature and the capillary pulled to different positions. Most experiments included a mixture of CO, H_2 , C_3H_6 , $C_{12}H_{26}$ and NO, in 5% H_2O , 10% O_2 and a balance of N_2 . Outlet concentrations were also monitored with a MKS 2030 FTIR.

Results and Discussion

In the full mixture of reactants described above, the data demonstrate that H_2 and CO are oxidized prior to C_3H_6 which is oxidized prior to $C_{12}H_{26}$. At higher flowrates, back-to-

front oxidation was observed for these species, while at lower flow, H_2 and CO followed the back-to-front ignition pattern, but the C_3H_6 and $C_{12}H_{26}$ began oxidizing about mid-way through the sample. There was not consistent, clear evidence depicting a difference in the oxidation of H_2 or CO as a function of temperature. Experiments with fewer reactants demonstrated that NO outlet concentrations were suppressed when C_3H_6 was added. Adding CO or H_2 to this mixture resulted in little change in the negative effect of C_3H_6 .

An example of data obtained along the catalyst length at a constant inlet temperature, and after steady-state had been reached, is shown in Figure 1. The H_2 and CO, based on a CO_2 mass balance, are oxidized within 1.5 cm of the inlet, while the hydrocarbons begin oxidizing after 0.75 cm from the inlet and continue to the outlet. Such measurements provide key data for model validation as well as measures to compare as a function of catalyst aging.

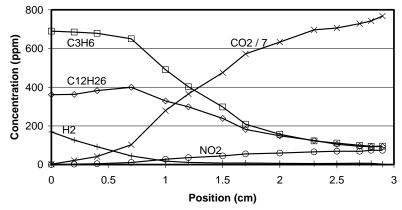


Figure 1. Species concentration data measured at different positions within the catalyst. Data were obtained at an inlet temperature of 248°C, and inlet concentrations of 160 ppm H_2 , 425 ppm $C_{12}H_{26}$, 665 ppm $C_{3}H_{6}$, 730 ppm CO, 130 ppm NO 5% $H_{2}O$, 10% O_{2} and a balance of N_{2} .

Significance

With increasingly stringent emissions regulations, more robust and efficient exhaust aftertreatment catalysts are being developed. For lean-burn engines, these are just now being introduced, and a common catalyst to these systems is an upstream oxidation catalyst. The results to be presented are being used to build models of these systems, for engine control strategies as well as catalyst development.

References

- 1. Choi, J.S., Partridge, W., and Daw, C.S., Appl. Catal. A: General, 293, 24 (2005).
- 2. Choi, J.S., Partridge, W., and Daw, C.S., Appl. Catal. B.: Environmental, 77, 145 (2007).