Highly Active and Stable Ni-Ce-ZrO₂ Catalysts in Combined H₂O and CO₂ Reforming of Methane for Gas to Liquids (GTL)

Hyun-Seog Roh¹*, Dae-Woon Jung¹, Ic-Hwan Eum¹, Byung-Chul Yoo¹, Kee Young Koo² and Wang Lai Yoon²*

¹ Yonsei University, Wonju, Gangwon-do 220-710, Korea
² Korea Institute of Energy Research, Yuseong, Daejeon 305-343, Korea

*hsroh@yonsei.ac.kr or wlyoon@kier.re.kr

Introduction

Due to high oil price, gas to liquids (GTL) technology to produce synthetic oil from natural gas attracts significant research interest. GTL technology is composed of synthesis gas production, Fischer-Tropsch synthesis and product work-up. The synthesis gas preparation section is an important part of the entire GTL complex. Therefore, the design of the synthesis gas preparation unit is critical for the economics of a GTL project [1]. Combined steam and carbon dioxide reforming of methane (CSCRM) offers great advantage to adjust H₂/CO ratio in the product synthesis gas by changing the feed H₂O/CO₂/CH₄ ratio to meet the requirements of Fischer-Tropsch synthesis [2]. Commercially, supported Ni catalysts have been used in SRM because Ni is economical compared with noble metal based catalysts [3]. However, supported Ni catalysts easily deactivate due to carbon formation in carbon dioxide reforming of methane (CRM) as well as in CSCRM. Recently, Xu and co-workers reported that the Ni catalyst supported by small nanoparticles of ZrO₂ or MgO could be highly active and stable for CRM [2,4]. In addition, Roh et al. reported that nano-sized Ni-Ce-ZrO₂ catalyst could be active and stable in CRM [5]. Thus, it is an important topic to develop active and stable catalysts in CSCRM. In this study, co-precipitated Ni-Ce-ZrO₂ catalysts have been optimized in CSCRM to achieve a H₂/CO ratio of 2, which is suitable for Fischer-Tropsch synthesis.

Materials and Methods

15%Ni-Ce-ZrO₂ with various Ce/Zr ratios were prepared by a co-precipitation method. The detailed preparation procedure was described elsewhere [5]. The prepared catalysts were characterized by BET, XRD, H₂-chemisorption, SEM and TEM. Activity tests were carried out at 800 °C under atmospheric pressure in a fixed-bed micro-tubular quartz reactor with an inner diameter of 4 mm. The detailed reaction procedure was described elsewhere [6]. The feed (H₂O + CO₂)/CH₄ ratio was fixed at 1.2. A space velocity of 265,000 cm³ gas fed/g cat-h was used to screen the catalysts in this study. Prior to each catalytic measurement, the catalyst was reduced in 10% H₂/N₂ at 700 °C for 1 h. The reactant gas stream consisted of H₂O, CO₂, and CH₄. Water was fed using a syringe pump and was vaporized at 150 °C upstream of the reactor. The reformate was chilled, passed through a trap to condensate residual water, and then flowed to the on-line GC.

Results and Discussion

Co-precipitated Ni-Ce-ZrO₂ catalysts with various Ce/Zr ratios have been tested with H₂O/CO₂/CH₄ ratio of 0.8/0.4/1.0 because H₂/CO ratio of 2 has been achieved in this reaction condition. Figure 1 shows CH₄ conversion with time on stream over co-precipitated Ni-Ce-ZrO₂ catalysts. Both Ni-Ce₀.₆Zr₀.₄O₂ and Ni-CeO₂ catalysts exhibited the highest CH₄ conversion with stability. It is interesting to note that with increasing Ce/Zr ratio the stability of the catalyst becomes better. According to XRD patterns, three catalysts, Ni-CeO₂, Ni-Ce₀.₆Zr₀.₄O₂ and 15%Ni-Ce₀.₆Zr₀.₄O₂ show cubic phase, while 15%Ni-Ce₀.₄Zr₀.₆O₂ illustrates tetragonal phase. In the case of 15%Ni-Ce₀.₄Zr₀.₆O₂, the XRD pattern shows the transition state from cubic to tetragonal but close to cubic phase. It is concluded that CeO₂ plays an important role in giving high activity as well as stability in CSCRM. This is due to high oxygen storage capacity of CeO₂, which stores and releases reversibly active oxygen species depending on the reaction condition.

Significance

Ni/Ce-ZrO₂ catalysts with high Ce content can be a good candidate catalyst for CSCRM due to high oxygen storage capacity.

Figure 1. CH₄ conversion with time on stream over Ni-Ce-ZrO₂ catalysts (T=800°C, H₂O/CO₂/CH₄ ratio of 0.8/0.4/1.0).

References