The Effect of Support on NO Oxidation over Supported Co₃O₄ Catalysts

Dae Su Kim¹, Tae Hun Yeon², Jae Eui Yie³ and <u>Eun Duck Park¹*</u>

¹Division of Energy Systems Research, Ajou University, Suwon, 443-749 (Korea)

²R&D Center, Heesung Catatlysts corp., Shiheung, 429-450 (Korea)

³Division of Biotechnology & Nanotechnology, Ajou University, Suwon, 443-749 (Korea)

*edpark@aiou.ac.kr

Introduction

Nitrogen oxides (NO_x) have been considered to be one of main pollutants to be eliminated. Among known various methodologies, the selective catalytic reduction (SCR) with various reducing agents involving NH₃ and hydrocarbons has been generally accepted to be most promising one. Recently, it has been reported that the co-presence of NO₂ with NO can accelerate the NH₃-SCR [1]. Furthermore, it has been frequently reported that NO₂ has a beneficial effect on the SCR with hydrocarbons. In the lean burning natural gas or diesel engine, NO_x is mainly composed of NO. Therefore, the oxidation of NO into NO₂ can be an important reaction for NO_x control. Until now, several catalyst systems have been examined for NO oxidation. They can be grouped into the noble metals [2] and the transition metal oxides [3] catalysts. Among noble metal catalysts, supported Pt-based catalysts have been intensively examined. Besides of its high price, the development of catalyst system based on the transition metal oxides is required to substitute Pt-based catalysts because this Pt-based catalyst has been reported to be deactivated by several causes. The decreasing NO oxidation activity was observed with concomitant phase transformation from Pt to PtO. The presence of SO₂ and H₂O was also reported to decrease the catalytic activity via formation of sulfate on the support and decrease in Pt surface area, respectively. Until now, Co-based catalyst systems have been frequently reported to have promising catalytic activity for NO oxidation. However, few comparison works among supported cobalt oxides have been conducted systematically. In this study, cobalt oxides catalysts prepared with different cobalt precursors, supports, and cobalt contents were compared for the NO oxidation in the absence and presence of water vapor in a feed. The effect of SO₂ in a feed on the catalyst stability was also examined. The observed catalytic activity was tried to be correlated with the crystalline size of Co₃O₄ and its interaction with supports.

Materials and Methods

All the catalysts were prepared with a wet impregnation method from an aqueous solution of cobalt acetate or cobalt nitrate. Various metal oxides such as TiO₂ (P-25), yttria-stabilized zirconia (YSZ), CeO₂, SiO₂, SiO₂-Al₂O₃, CeO₂-ZrO₂ and γ-alumina were purchased and utilized as a support. 1 wt% Pt/γ-Al₂O₃ was purchased from Aldrich and utilized as a reference catalyst. All the catalysts were calcined at 573 K in air for 1 h before a reaction.

The N_2 physisorption, X-ray diffraction (XRD), temperature-programmed reduction with H_2 (H_2 -TPR) and NO chemisorption were conducted to characterize catalysts.

Catalytic activities were measured over a fixed bed of catalysts in a tubular flow reactor of 8-mm i.d. Reactant gases were fed to the reactor by means of electronic mass flow controller (MKS). The reactant gas typically consisted of 500 ppm NO and 5 vol% O₂ in N₂. The NOx

concentration in the inlet and outlet gas was analyzed by means of a NO/NO_2 combustion gas analyzer (Euroton).

Results and Discussion

As shown in Table 1, the catalytic activity for NO oxidation at kinetically-controlled reaction temperatures decreased in the following order: $\text{Co/CeO}_2 \sim 1$ wt% $\text{Pt/}\gamma\text{-Al}_2\text{O}_3 >> \text{Co}_3\text{O}_4 > \text{Co/SiO}_2 > \text{Co/YSZ} \sim \text{Co/CeO}_2\text{-ZrO}_2 > \text{Co/ZrO}_2 > \text{Co/TiO}_2 > \text{Co/}\gamma\text{-Al}_2\text{O}_3 >> \text{Co/SiO}_2\text{-Al}_2\text{O}_3$. The cobalt oxides supported on the reducible metal oxides exhibited the higher catalytic activity compared with those supported on the irreducible metal oxides except Co/SiO_2 . The most active catalyst, Co/CeO_2 , has a comparable activity for this reaction over all reaction temperatures with a well-known noble metal catalyst, $\text{Pt/}\gamma\text{-Al}_2\text{O}_3$. The Co/CeO_2 shows the largest NO uptake which is larger than any other supported catalysts by at least 7 times. No detectable No uptake can be obtained for CeO_2 . Therefore, the NO chemisorption can be regarded to be due to the presence of Co_3O_4 in the catalyst. The crystalline size of Co_3O_4 and the presence of the easily reducible Co_3O_4 during $\text{H}_2\text{-TPR}$ appeared to be closely related to the low-temperature catalytic activity. The reversible and irreversible deactivation was observed over $\text{Co}_3\text{O}_4/\text{CeO}_2$ in the presence of water vapor and SO_2 in a feed, respectively. However, this deactivation due to the presence of SO_2 can be significantly suppressed as long as the concentration of SO_2 is below 10 ppm.

Table 1. The physicochemical properties of 10 wt% Co/supports and their catalytic activities at 553 K.

Catalysts	Surface area [m²/g]	Crystalline size of Co ₃ O ₄ ^a	NO uptake at 298K [μmol/g _{cat.}]	NO Conversion b
Co/CeO2	230	-	461.5	73.1
Co/ZrO ₂	86	10.6	50.2	32.3
Co/CeO ₂ -ZrO ₂	101	9.3	28.7	39.4
Co/YSZ	9	14.6	2.1	44.5
Co/γ-Al ₂ O ₃	227	3.0	23.8	14.9
Co/TiO ₂	57	11.6	11.3	24.8
Co/SiO ₂ -Al ₂ O ₃	430	-	25.9	6.6
Co/SiO ₂	272	-	59.9	56.5
Co_3O_4	65	19.3	183.0	66.6

^a Crystalline size was determined from the Scherrer line broadening equation.

Significance

The crystalline size of Co_3O_4 and the presence of the easily reducible Co_3O_4 during H_2 -TPR appeared to be closely related to the low-temperature catalytic activity for NO oxidation over supported cobalt oxides catalysts.

References

- 1. Koebel, M., Elsener, M., and Kleemann, M., Catal, Today 59, 335 (2000).
- 2. Ohtsuka, H., Appl. Catal. B: Environ. 33, 325 (2001).
- 3. Wang, Q., Park, S.Y., Choi, J.S., Chung, J.S., Appl. Catal. B: Environ. 79, 101 (2008)

^b Reactants: 500 ppm NO, 5 % O_2 in N_2 . $F/W = 80 L/h/g_{cat}$.