Selective Catalytic Reduction of NO by NH₃ over V₂O₅-WO₃/TiO₂ Catalysts

Akawat Sirisuk^{1,*}, Izkun Arunyakasemsuk¹, and Piyasan Praserthdam¹

Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Chulalongkorn University, Bangkok, 10330, Thailand

*Akawat.s@eng.chula.ac.th

Introduction

Nitrogen oxides (NO_x) are produced by combustion of fossil fuels and are emitted from automobiles and stationary sources such as oil- and coal-fired power plants, and waste incinerators. Reduction of NO_x can be achieved by adapting various combustion techniques (e.g. low NO_x burner or flue gas recirculation) or by treatment of flue gas. The most effective and common technique to remove NO_x in the exhaust gas from stationary sources is selective catalytic reduction (SCR) of NO_x to NO_x using ammonia as a reductant [1].

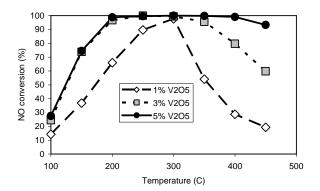
The widely-used industrial catalyst for the SCR process is based on V_2O_5 -WO $_3$ supported on anatase TiO $_2$.The amount of vanadium oxide in the catalyst formulation is generally small (< 1 wt%). Vanadium oxide brings about the high activity of the catalyst in the reduction of NO_x but it also enhances the undesired oxidation of SO_2 to SO_3 in the case of sulfur-containing fuels [1-2]. Tungsten oxide is added to provide thermal stability of the V_2O_5 -WO $_3$ /TiO $_2$ system [3].

Materials and Methods

To prepare TiO_2 , titanium tetraisopropoxide ($Ti(OC_3H_8)_4$) underwent controlled hydrolysis under acidic condition, following by dialysis in cellulose membranes. The resulting TiO_2 sol was then dried and calcined at 350 °C for two hours so as to obtain TiO_2 powder.

To deposit V_2O_5 and WO_3 on TiO_2 support, the desired amount of support was soaked under continuous stirring, in an excess solution of ammonium metavanadate (NH₄VO₃) and ammonium metatungstate (H₂₆N₆O₄₀W₁₂), respectively. After the impregnation, the supported catalyst was calcined at 550 °C for two hours.

Approximately, 0.2 g of V_2O_5 -WO $_3$ /TiO $_2$ catalyst was placed in a tubular reactor. A heating coil was employed to raise the temperature of the reaction to the desired temperature in the range of 150-450 °C. The feed gas contained 500 ppm of NO, 500 ppm of NH $_3$, 3% of O $_2$, and balance N $_2$. GHSV for each experiment was set at 40,000 hr $^{-1}$. The concentration of NO leaving the reactor was monitored continuously by NO $_3$ analyzer (Shimadzu NOA-7000).


Results and Discussion

According to XRD result, TiO_2 support consisted of primarily anatase phase with some rutile and brookite phases present. The specific surface area of TiO_2 support is 91 m²/g. After the impregnation of V_2O_5 and WO_3 , the specific surface area of the catalyst decreased to a value in the range of 58 - 72 m²/g, probably due to the second calcinations at 550 °C.

The activity of V_2O_5 -WO $_3$ /TiO $_2$ catalyst for SCR of NO was determined by conversion of NO. Our preliminary results indicated that as the amount of V_2O_5 loading increased, the NO

conversion reached an optimum around 300 °C (See Figure 1). Furthermore, at 5 wt% V_2O_5 the NO conversion remained high (>90%) beyond 300 °C. When the amount of WO₃ loading was varied, complete conversion of NO was still achieved around reaction temperatures of 250 – 300 °C. Nevertheless, the influence of WO₃ loading on the NO conversion beyond 300 °C was still inconclusive. Further experiments were planned in order to elaborate on that.

Figure 1. Conversion of NO as a function of temperature for V_2O_5 -WO $_3$ /TiO $_2$ catalysts containing 8 wt% WO $_3$ and 1-5 wt% V_2O_5

Significance

Increasing the amount of V_2O_5 loading in V_2O_5 -WO₃/TiO₂ catalyst can increase the thermal stability of the catalyst during SCR of NO by NH₃.

References

- Phil, H.H., Reddy, M.P., Kumar, P.A., Ju, L.K., and Hyo, J.S. Appl. Catal. B-Environ 78, 301 (2008).
- 2. Busca, G., Leitti, L., Ramis, G., and Berti, F. Appl. Catal. B-Environ 18, 1 (1998).
- Djerad, S., Tifouti, L., Crocoll, M., and Weisweiler, W. J. Mol. Catal. A-Chem 208, 257 (2004).