Studying the evolution of catalytic surfaces under realistic conditions : $Pd_{70}Au_{30}(110)$ surface properties under CO, O_2 and CO+ O_2 elevated pressures

M.A. Languille^{1,a}, <u>F.J. Cadete Santos Aires^{1,*}</u>, B.S. Mun^{2,b}, Y. Jugnet¹, M.C. Saint-Lager³, H. Bluhm², O. Robach⁴, D.E. Starr², C. Rioche², P. Dolle³, S. Garaudée³, E. Ehret¹, P.N. Ross⁵, J.C. Bertolini¹

¹IRCELYON, Institut de Recherches sur la Catalyse et l'Environnement de Lyon.

UMR5256 CNRS/Université Lyon I. 2 Av. A. Einstein. 69626 – Villeurbanne cedex. France.

²ALS. LBNL. One Cyclotron Road, MS 2R0100. Berkeley, CA 94720-8226. USA.

³Institut Néel, CNRS/UJFG. 25, Av. des Martyrs – BP166. 38042 – Grenoble cedex 9. France.

⁴CEA/DSM/DRFMC/SPrAM/LPCM. 17, Av. des Martyrs. 38054 – Grenoble cedex 9. France.

⁵MSD. LBNL. One Cyclotron Road, MS 2R0100. Berkeley, CA 94720-8226. USA.

^aPresent address: IPANEMA. Synchrotron SOLEIL. 91192 Gif-sur-Yvette cedex. France.

^bPresent address: Dept. Appl. Phys. Hanyang Univ., Ansan, Kyeonggi 426-791, Korea.

*francisco.aires @ircelyon.univ-lyon1.fr

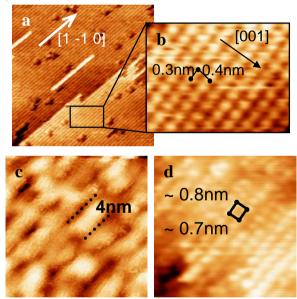
Introduction

Elevated pressure *in situ* STM studies were crucial to show that CO adsorption on gold surfaces strongly modifies their surface structures [1-3]. However oxygen dissociation does not occur spontaneously on such surfaces preventing efficient CO oxidation. The addition of an oxygen-dissociative metal (such as Pd) to gold may overcome this difficulty. In this work we present results concerning the behaviour of $Pd_{70}Au_{30}(110)$ under elevated pressures of CO and O_2 and compare them to the results obtained on Au(110) under similar conditions.

Materials and Methods

The STM and PM-IRRAS in situ experiments were developed at IRCELYON based on a modified MicroLH STM (Omicron) and on a NEXUS spectrometer (Thermo Nicolet), respectively. The XPS experiment was performed at ALS beamlines 9.3.2 & 11.0.2 (Berkeley, USA)) and the SXRD was performed at ESRF beamline BM32 (Grenoble, France) on a reactor developed at the Institut Néel. Under UHV, the outmost surface layer of the $Pd_{70}Au_{30}(110)$ (from Surface Prep Lab) is strongly enriched (above 85% of Au as shown by LEISS).

Results and Discussion


Brief Pd₇₀Au₃₀(110) under UHV conditions exhibits a (1x1) un-reconstructed surface (Fig. 1a,b). Under CO pressure the surface roughens and a "rice grain" morphology is observed with typical domain sizes around 4 nm and 0.05 nm corrugation (Fig. 1c) that prevails up to 500Torr. PM-IRRAS of CO adsorption on Pd₇₀Au₃₀(110) (at different CO pressures: 0.02Torr to 100Torr) shows three vibration bands: 2115cm⁻¹ (CO top on Au), 2090cm⁻¹ (CO top on Pd) and 1980-1990cm⁻¹ (bridged CO). Complementary studies by XPS show the building up of high energy shoulders on the Pd-3d_{3/2} peak with increasing CO pressure. These shoulders can be related to chemical and/or structural effects induced by CO chemisorption. Under O₂ pressure (<1 Torr) XPS reveals a strong oxidation of Pd. At higher pressures (500 Torr) a structure close to a p(2x2) building on a roughened surface is observed by STM (Fig. 1d). SXRD showed that the surface (1x1) structure disappears under CO

pressure. Addition of O_2 (pressure 500Torr) induces the formation of a bulk-like Pd oxide at the surface as shown by the increase of the oxide peak (k=1.47) at T=473K.

SXRD and XPS in situ studies at different pressure ranges revealed the catalytic efficiency of the surface under reaction conditions (CO in high excess of O_2).

The use of complementary in situ techniques enabled us to study the evolution of $Pd_{70}Au_{30}(110)$ surface characteristics upon adsorption of CO and O_2 at elevated pressures, unavailable otherwise. STM shows a strong modification of the surface structure whereas XPS reveals a strong influence of CO and O_2 on the electronic properties of Pd, with oxidation at high pressure/temperature in the latter case. SXRD yields consistent results with both.

Figure 1. STM images of the $Pd_{70}Au_{30}(110)$ surface under : (a,b) UHV conditions (20x20 nm² and 4.7x3 nm² respectively); (c) 1Torr of CO (20x20 nm²); (d) 500 Torr of O² (10x10 nm2)..

References

- Y. Jugnet, F.J. Cadete Santos Aires, L. Piccolo, C. Deranlot, J.C. Bertolini, Surf. Sci. 521, L639 (2002)
- L. Piccolo, D. Loffreda, F.J. Cadete Santos Aires, C. Deranlot, Y. Jugnet, P. Sautet, J.C. Bertolini, Surf. Sci. 566-568, 995 (2004).
- F.J. Cadete Santos Aires, C. Deranlot, M.A. Languille, L. Piccolo, Y. Jugnet, A. Piednoir, J.C. Bertolini, in CD-ROM: Extended abstracts, questions & answers of the 13th International Congress in Catalysis, (IFP Ed.), 2004.