On the unexpected promoting effect of the Cl-containing Pd precursor on the CH₄-SCR of NO₂ of Cl-free Pd/WO₂-ZrO₂ catalysts Marco Faticanti^{1,2}, Xavier Carrier^{1,2}, Jean-Marc Krafft^{1,2}, Michel Che^{1,2}and <u>Cyril Thomas</u>^{1,2}* ¹UPMC Univ. Paris 06, Laboratoire de Réactivité de Surface, Paris 75252 (France) ²CNRS, UMR 7609, Laboratoire de Réactivité de Surface, Paris 75252 (France) *cyril.thomas@upmc.fr #### Introduction The selective catalytic reduction of NO_x assisted by CH₄ (CH₄-SCR) has received great attention as it may offer an attractive alternative to the SCR by ammonia (NH₃-SCR). Despite numerous studies performed on the CH₄-SCR, the development of more efficient and durable catalytic formulations is still of the utmost interest to meet the ever more drastic regulations on the emissions from stationary sources. Transition metals supported on zeolites have been extensively studied for such a reaction [1-3]. These catalysts, however, are severely affected by water vapor [4] and SO_x which are present in the real exhausts at ppm levels. To overcome these drawbacks, alternative supports such as acidic sulfated- or tungstated-zirconia have been studied and have shown interesting capabilities for the CH₄-SCR [5-9]. Among transition metals, Pd is one of the most active [5]. To avoid deactivation of sulfated-zirconia supports at high temperature due to sulfate loss, tungstated-zirconias are privileged [7-9]. In these studies, however, various Pd precursors were used which made it difficult to draw definite conclusions about the influence of the nature of the Pd precursor on the CH₄-SCR for Pd/WO_x-ZrO₂ (Pd/WZ) catalysts. This work aims at shedding light on the influence of the nature the Pd precursor on the CH_4 -SCR for WZ-supported catalysts. #### Materials and Methods Two Pd(0.25 wt%)/W(12 wt%)/Z catalysts were synthesized by impregnation of the corresponding Pd precursor (PdCl₂ or Pd(NO₃)₂, Johnson Matthey) on a WZ support prepared by refluxing a commercial zirconium oxyhydroxide (MEL Chemicals, XZO880/01) and ammonium metatungstate (Fluka) in $\rm H_2O$ at 110 °C for 20 h. For comparison purpose, impregnation of PdCl₂ was also carried out on ZrO₂ (Pd/Z). After drying, the samples were calcined at 650 °C for 3 h in static air. The catalysts were characterized by N₂ physisorption, XRD, XPS, Raman spectroscopy and CO adsorption followed by FTIR. Steady-state CH₄-SCR (1500 ppm CH₄, 7 % O₂ and 500 ppm NO_x in N₂) was carried out in a quartz micro-reactor coupled to a set of specific detectors under a GHSV of about 40,000 h $^{-1}$ [10]. ### Results and Discussion For both catalysts (PdCl₂/WZ and Pd(NO₃)₂/WZ), a maximum in the NO_x conversions is observed at 500 °C (Fig. 1a) with CH₄ conversions close to 40 % (Fig. 1b). Yet, PdCl₂/WZ exhibits a much greater (+ 63 %) yield in N₂ than that found for Pd(NO₃)₂/WZ (Fig. 1a). It can be noted that despite the fact that Pd/Z oxidizes CH₄ at slightly lower temperatures than the W-promoted samples (Fig. 1b), it does not catalyze the removal of NO_x, as no activity could be observed (Fig. 1a). This clearly shows the importance of acidity for CH₄-SCR. XRD patterns do not show any significant difference between both W-promoted catalysts, in which the tetragonal zirconia phase is mainly (~ 90 %) stabilized. In contrast, Raman measurements clearly reveal that the use of PdCl₂ limits the sintering of W, since only polytungstate species (WO_x) are observed with W=O and W-O-W contributions at 1021 and 825 cm⁻¹, respectively, whereas that of Pd(NO₃)₂ shows the additional presence of WO₃ (v_{W-O-W} at 809 cm⁻¹). In agreement with the greater dispersion of W on PdCl₂/WZ, the adsorption of CO at 77 K followed by FTIR reveals a greater Brønsted acidity for this material, both in terms of number (contributions v_{CO} at 2177 cm⁻¹ and v_{OH} at 3480 cm⁻¹) and strength (Δv_{OH}) of acid sites, than that of Pd(NO₃)₂/WZ. Yet, elemental analysis and XPS of PdCl₂/WZ show that Cl⁻ is fully removed after calcination. Hence, the use of a Cl-containing Pd precursor plays a crucial role during the catalyst preparation without poisoning the final catalyst. # Significance In most cases, the use of chlorinated precursors is avoided, as the deposition of Cl on the support may negatively influence the catalytic properties of the as-prepared materials. This study shows that overcoming such a preconceive idea may lead to the preparation of materials with improved efficiency for environmental concern. Figure 1: (a) NO_x and (b) CH_4 conversions for: $PdCl_2/WZ$ (1st exp. \bullet , 2nd exp. O), $Pd(NO_3)_2/WZ$ (\blacksquare) and $PdCl_2/Z$ (\bullet) # References - . Li, Y. and Armor, J.N., Appl. Catal. B 1, L31 (1992). - Nishizaka, Y. and Misono, M., Chem. Lett., 1295 (1993). - 3. Montes de Correa, C. and Córdoba Castrillón, F., J. Mol. Catal. A 228, 267 (2005). - 4. Armor, J.N., Catal Today 26, 147 (1995). - 5. Ohtsuka, H., Appl. Catal. B: Environ. 33, 325 (2001). - 6. Holmgreen, E.M., Yung, M.M. and Ozkan, U.S., J. Mol. Catal. A 270, 101 (2007). - 7. Chin, Y-H., Alvarez, W.A. and Resasco, D.E., Catal. Today 62, 159 (2000). - 8. Chin, Y-H., Alvarez, W.A. and Resasco, D.E., Catal. Today 62, 291 (2000). - 9. Okumara, K., Kusakabe, T. and Niwa, M., *Appl. Catal. B* 41, 137 (2003). - Thomas, C., Gorce, O., Fontaine, C., Krafft, J.-M., Villain, F. and Djéga-Mariadassou, G., Appl. Catal. B 63, 201 (2006).