Understanding the chemistry of NO_x reduction in the FCC regenerator by lambda sweep test

<u>Qi Fu*</u>, David M. Stockwell 25 Middlesex Essex-Turnpike, Iselin, NJ 08830 (USA) *qi.fu@basf.com

Introduction

 NO_x emissions from the fluid catalytic cracking units (FCCU) are being limited by regulatory agencies to an increasing degree. NO_x is formed in the FCCU regenerator, where coke is burned off to provide process heat and rejuvenate the catalyst. Typical levels of NO_x in the flue gas from fluid catalytic cracking regeneration units vary between 50 and 150 ppm, depending upon feed nitrogen content and regenerator conditions. Use of low NO_x CO oxidation promoter is a simple, cost-effective way in existing FCC units to promote coke combustion and reduce CO and NO_x emission, without significant modifications in the regenerator design or the unit operating conditions.

In order to develop better low NO_x CO promoter, it is essential to understand the chemistry of NO_x formation in the FCC regenerator. Pathways for conversion of nitrogencontaining species proposed earlier [1-2] include formation of N_2 via NO+CO, NO+coke, NO+reduced ceria OSC, and NH₃-SCR, once NO_x is formed, as well as oxidation of HCN and NH₃. However, during coke-burn experiments, a rather complex reaction network is involved which does not lend itself towards dissection of these individual pathways. In this paper, we study the discrete NO_x reaction pathways by the lambda sweep test method [3] to learn which are most relevant under realistic FCCU conditions for different types of CO oxidation promoters.

Materials and Methods

Four CO oxidation promoters, Pt/Al₂O₃, Pd/Al₂O₃, Pd/CeO_x/Al₂O₃ and Pd/CuO/CeO_x/Al₂O₃ were prepared by wet impregnation of appropriate salt solutions on Al₂O₃ microspheres (95 m²•g⁻¹, 0.50 ml g-1 water pore volume), followed by calcination 2 h at 650 °C. The loading of precious metal is 500 ppm. We have learned FCC catalyst has activity for HCN hydrolysis and can improve the selectivity of NH₃ oxidation to N₂. To avoid the interference of FCC catalyst and overheating of the CO promoters, an inert kaolin microsphere was used both as a control and as a diluent, and this material had been steamed at 816 °C for 4 hours in 100% steam. CO promoters was done using the proprietary lambda sweep test method [3]. Down stream gas analysis was done by FTIR with N₂ yield determined by material balance. The dose of CO promoter was adjusted to match CO conversion activity, which is reported as an overall lean CO₂/CO by using the yields of CO₂ and CO obtained when the feed was λ >1.

Results and Discussion

It has been found that HCN is the primary nitrogen-containing product formed from FCC coke combustion [3-4]. To understand how HCN and NH_3 are converted to NO_x/N_2 , we fed HCN, NH_3 , and NO_x individually as well as the various combinations with or without steam to probe the pathways of the oxidation of HCN, the hydrolysis of HCN to NH_3 , the

selective oxidation of NH₃, and the reduction of NO to N₂ by NH₃, coke or CO and the effect of the catalysts. The concentration of co-fed gases CO₂, CO, SO_x, H₂O and O₂ varied cyclically and exponentially, but the total flow rate of these mixtures was held constant to maintain fluidization and mass transfer constant. We have found that HCN oxidation is faster than its hydrolysis to NH₃ so not all HCN is hydrolyzed to NH₃, but can be directly oxidized to NO_x. In the lean region, NO cannot be reduced by either CO or coke but it can be reduced by NH₃; Addition of CuO reduces NO_x yield by improving selectivity of HCN oxidation to N₂. Addition of CeO₂ lowers NO_x yield by improving selectivity of NH₃ oxidation to N₂ and enhancing NO_x reduction by NH₃.

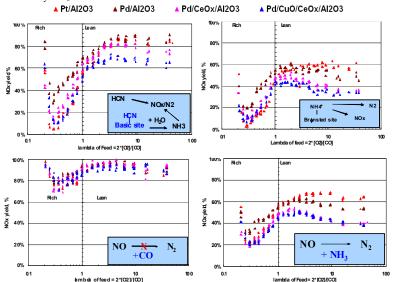


Figure 1 NO_x selectivity with various N-species in the feed a) HCN only; b) NH_3 only; c) NO only; d) NH_3 and NO.

Significance

The often-proposed NO-CO and NO-coke pathways are seldom travelled by FCC NO_x . Instead, NO_x is reduced by reacting with NH_3 via SCR route. The preferred route is to hydrolyze HCN to NH_3 and/or selectively oxidize NH_3 to N_2 .

References

- 1. Zhao, X., Peters, A. W., and Weatherbee, G. W., Ind. Eng. Chem. Res. 1997, 36, 4535
- 2. Stevenson, S., Socha, R., and Mathias, M., Ind. Eng. Chem. Res. 2005, 44, 2966
- Stockwell, D. M., Stud. Surf. Sci. Catal. (Fluid Catalytic Cracking VII) (M.L. Occelli, Ed.), 2007, 166, 79; US Pat. Appl. 2007/0166826
- 4. Houser, T. J., Hull, M., Alway, R. M. and Biftu, T., Int. J. Chem. Kinet., 1980, 12, 569