Impact of Stepwise Desulfation on the Performance of a Ba-Based Commercial Lean NO_x Trap Catalyst

Jae-Soon Choi*, William P. Partridge, Josh A. Pihl, Todd J. Toops, and C. Stuart Daw Oak Ridge National Laboratory, Oak Ridge, TN 37831-6472 (USA) *choijs@ornl.gov

Introduction

The Lean NO_x Trap (LNT) is being implemented in lean-burn vehicles for NO_x aftertreatment. However, for its broader deployment, significant technical improvement is necessary especially with respect to sulfur poisoning. The LNT NO_x storage components (Ba, K) have greater affinity for exhaust sulfur, and thus progressively lose their NO_x storage capacity over time. As a result, high-temperature reductant-rich exhaust conditions are created periodically to "desulfate" the catalyst and regain its performance. The challenge is to develop more S-resistant LNTs and more effective strategies to desulfate while minimizing the fuel penalty and thermal aging arising from these high temperature excursions. Meeting this challenge will require deeper insights into how sulfation/desulfation affects LNT catalysis under relevant conditions. In addition to NO_x storage materials, practical LNTs contain various other functions such as precious metals (Pt, Pd, Rh), supports (Al₂O₃, CeO₂, TiO₂), and oxygen storage capacity (CeO₂-ZrO₂). These components, through complex spatiotemporal interplay, determine LNT performance. Previously, we found that several LNT functions can be affected by S and proposed a conceptual model correlating spatiotemporal reaction distribution and global performance of a commercial LNT [1]. In this work, we addressed the desulfation aspect of the same LNT to further clarify the nature, distribution and roles of different S species by assessing the influence of stepwise desulfation on LNT performance.

Materials and Methods

A commercial Umicore LNT was evaluated on a bench reactor; details of the catalyst and reactor can be found in [1]. From ICP, XRD, EPMA, and TEM analyses, the catalyst was found to contain mainly two distinct domains: i) "active LNT" comprising Pt, Pd, Rh, Ba supported on CeO₂-ZrO₂; and ii) MgAl₂O₄. A fresh sample was degreened via hydrothermal treatment and six sulfation/desulfation steps to obtain reproducible performance. Total NO_x storage capacity (lean portion of 15/10-min lean/rich long cycling), NO_x conversion and NH₃/N₂O selectivity (both from 60/5-s lean/rich short cycling) were determined at 400 °C before and after sulfation (3.4 g/L) and after each of four consecutive desulfation steps (temperature ramp at 5 °C/min from 400 °C to maximum temperature T_{max}: 492, 525, 564, 690 °C). The lean phase contained 300 ppm NO, 10% O₂, 5% H₂O, 5% CO₂ and N₂ balance, while the rich phase contained H₂ (0.4% for long and 3.4% for short cycling), 5% H₂O, 5% CO₂ and SpaciMS. The sample was characterized with various techniques including DRIFTS.

Results and Discussion

Sulfation decreased NO_x storage and conversion, but increased NH_3 selectivity (Fig. 1). This increased NH_3 was previously explained by reduced oxidation of NH_3 by downstream oxygen storage components based on spatially resolved gas analyses using

SpaciMS [1]. Briefly, the plug-like poisoning of Ba sites resulted in an axial displacement of the NH₃-forming NO_x-storage-reduction zone and concommitant shortening of the downstream oxygen-storage-only zone. The consecutive desulfation steps progressively reversed these trends (Fig. 1). However, the relationship between incremental S removal and resultant performance recovery was not linear. For example, the 1st desulfation step $(T_{max}=492 \,^{\circ}C)$ produced insignificant performance recovery despite 46% S removal. The S removed in this 1st step was primarily associated with CeO₂-ZrO₂ and other supports in the catalyst front. The implication is that this "containment" of 46% S in the catalyst front minimized S impact on downstream NO_x storage sites. The slight degradation of short cycling performance (Figs. 1b and 1c) is likely due to partial readsorption of the upstream-released S onto downstream NO_x storage sites. The 2nd and 3rd steps together removed only 26% S, but resulted in major recovery of NO_x conversion and NH₃/N₂O selectivity. A remarkable impact of the 4th step (T_{max}=690 °C; removal of remaining 28% S) is the recovery of over 50% of the total NO_x storage capacity with minor impact on NO_x conversion and NH₃/N₂O selectivity.

Figure 1. Performance of a Ba-based commercial LNT as a function of desulfation extent: (a) total sulfur removal and recovery of total NO_x storage capacity, (b) cycle-averaged NO_x conversion, and (c) cycle-averaged NH_3 and N_2O selectivities.

Based on characterization (TPR, SpaciMS etc.), we attributed S from the 2^{nd} through 4^{th} steps to Ba sulfates. It follows that only a small portion of Ba was necessary to achieve full conversion under short cycling conditions. N₂O selectivity remained low throughout the experiments. Interestingly, N₂O and NH₃ followed opposite trends suggesting that N₂O might be a minor product of oxidizing upstream-formed NH₃ by downstream oxygen species. In this presentation, we will discuss in detail the nature and distribution of different sulfur species and how their mobility under desulfation conditions affects local and global LNT performance.

Significance

This work provides fundamental insights on how desulfation at different temperatures affects the distribution of sulfur species and as a result the global performance of a commercial LNT. The findings will be useful to design, model and implement real LNTs.

Reference

1. Choi, J.-S., Partridge, W.P., and Daw, C.S., Appl. Catal. B 77, 145 (2007).