Modeling and Experimental Studies of HNCO as a Reactant for NO_x Control

Maruthi N. Devarakonda*, Russell G. Tonkyn, Diana N. Tran and Jonathan L. Male
Institute for Interfacial Catalysis, Pacific Northwest National Laboratory,
Richland, WA 99354
*maruthi.devarakonda@pnl.gov

Introduction

The selective catalytic reduction with NH_3 is widely used to reduce the NO_x emissions from both stationary and mobile sources. In mobile sources such as diesel vehicles, NH_3 is replaced by aqueous urea solution for safety reasons¹. Unfortunately, during low temperature engine operating conditions, urea droplets might not evaporate and thermolyze to form NH_3 , and isocyanic acid (HNCO) might not hydrolyze to form another molecule of NH_3 required to reduce NO_x in diesel exhaust. To address this shortcoming, there is a need to investigate alternate reactants such as NH_3 and HNCO for NO_x control.

HNCO formed from urea undergoes a series of condensation reactions leading to a variety of secondary compounds such as biurets and other high molecular weight melamine compounds². These compounds can plug the monolith channels thus impacting the NO_x conversion and urea penalty in the aftertreatment system. Therefore, it is essential to understand the kinetics and surface chemistry of various HNCO reactions on the catalyst surface to enhance NO_x conversion. This paper presents the experimental procedure to generate HNCO and discusses possible reaction pathways involving NO, NO_2 , NH_3 and HNCO species on the catalyst, along with a brief modeling exercise.

HNCO Synthesis

HNCO is generated by de-polymerizing cyanuric acid, following the procedure presented by Lercher and Zhan 3 . A heated tubular reactor is divided into two temperature zones. Half of the first zone is filled with quartz beads to pre-heat the carrier gas stream. The second half of the first zone contains solid cyanuric acid. The first zone is maintained at a temperature of 320 $^{\circ}$ -330 $^{\circ}$ C. The second zone contains Al $_2$ O $_3$ catalyst particles to lower the depolymerization temperature of cyanuric acid to 370 $^{\circ}$ C. HNCO is collected in two serial cold traps placed downstream of the tubular reactor. During start-up, hydrolysis on surface OH groups of the catalyst occurs. As suggested 4 , it is essential to by-pass HNCO stream from the cold traps to avoid condensation of NH $_3$ and CO $_2$ into the product.

Reactor Set-up

The set-up for HNCO tests is shown in Figure 1. HNCO is introduced into the reactor via an N_2 stream and a saturator at -30°C as shown. Based on a HNCO saturated vapor pressure curve as a function of temperature, the desired HNCO test concentrations can be prepared. For the reactor tests, a stream of 350 ppm of NO_x , 350 ppm of HNCO, 4.5% H_2O , 4.5% CO_2 , 14% O_2 and balance N_2 is used. To investigate the $HNCO/NO_x$ effect on NO_x conversion, the concentrations are varied based on reaction stoichiometry.

Figure 1: HNCO Reactor Set-up

Results and Discussion

A comparison is made between a validated Cu-zeolite NH₃-SCR steady state model and an uncalibrated HNCO-SCR model as shown in Figure 2. The figure shows that HNCO hydrolysis to NH₃ is fast and complete at $T > 150^{\circ}$ C and the downstream concentrations of NO, NO₂, NH₃ and N₂O are within 5 ppm for the two models at all 200° C < $T < 450^{\circ}$ C.

Figure 2: Comparison between Validated NH₃-SCR and Uncalibrated HNCO-SCR Models

Significance

This work helps understand the mechanistic aspects of HNCO hydrolysis on the SCR catalyst while investigating the possible reaction pathways leading to formation of secondary compounds.

References

- Piazzesi, G., Devadas, M., Krocher, O., and Elsener, M., Catalysis Communications, Vol. 7, 600-603, 2006.
- Hauck, P., Jentys, A, and Lercher, J.A., Applied Catalysis B: Environmental, Vol. 70, 91-99, 2007.
- 3. Lercher, J.A., and Zhan, Z., European Patent Application 94,113,599, 1995.
- 4. Zhan, P., *Ph.D. Dissertation*, University of Twente, 1995.