Resolving the Contributions of Surface Lewis and Bronsted Acid Sites during NO₂/NH₃ SCR: An *Operando* TP-IR Spectroscopic Investigation

Kevin Doura^a, Irène Malpartida^b, Marco Daturi^b, Israel E. Wachs^{a*}

^aOperando Molecular Spectroscopy and Catalysis Laboratory, Department of Chemical
Engineering, Lehigh University, Bethlehem, PA 18015 USA,E-mail: *iew0@lehigh.edu

^bLaboratoire de Catalyse et Spectrochimie, UMR 6506, CNRS and ENSICaen, 6 Bd Marechal
Juin, 14050 Caen Cedex, France

Introduction

The selective catalytic reduction of NOx with NH_3 over supported V_2O_5 -WO $_3$ /TiO $_2$ catalysts has been investigated for almost 30 years, yet a fundamental understanding of the relative contributions of the surface Lewis and Bronsted acid sites for the SCR reaction is still being debated. To resolve this long standing debate, the objective of this investigation was to perform an operando Temperature Programmed-IR spectroscopy investigation (FT-IR analysis of the surface NH_3 and NH_4 ⁺ species with simultaneous IR and MS analysis of the gas phase products) over a model supported V_2O_5 -WO $_3$ /TiO $_2$ /SiO $_2$ catalyst.

Materials and Methods

The model supported catalyst was initially prepared by the incipient-wetness impregnation technique using isopropanol solutions of titanium isopropoxide inside a glovebox under a continuously flowing N₂ environment on the SiO₂ support (~15 nm particles) due to the moisture sensitivity of the titania precursor. HR-TEM analysis revealed that the resulting TiO₂ nanoparticles (NPs) are 3-5 nm. Tungsten oxide was subsequently added to the 30% TiO₂/SiO₂ catalyst by incipient-wetness impregnation of aqueous solutions of ammonium metatungstate ((NH₄)₁₀W₁₂O₄₁·5H₂O) and calcined in flowing air at 450 C for 4 h. Raman analysis demonstrated that the supported 5% WO₃ phase was 100% dispersed as surface WO_x species (square-pyramidal mono-oxo structure) that preferentially self-assembled on the TiO₂ NPs in the supported 5% WO₃/30% TiO₂/SiO₂ catalyst. Vanadium oxide was introduced in the final preparation step by the incipient-wetness impregnation of isopropanol solutions of vanadium tri-isopropoxide (VO[CHO(CH₃)₂)₃ inside a glovebox with continuously flowing N₂. Raman analysis revealed that the supported 1% V₂O₅ phase was 100% dispersed as surface VOx species (trigonal mono-oxo VO₄ structure). The in situ surface and gas phase IR spectra for NH₃ chemisorption on the supported 1%V₂O₅-5%WO₃/30%TiO₂/SiO₂ catalyst were collected during NH₃ adsorption at 150°C while simultaneously monitoring the gas phase species by mass spectroscopy (MS). Subsequent surface and gas phase IR spectra were collected during the surface reaction between gas phase NO/O2 and adsorbed NH3 while simultaneously monitoring the gas phase species by MS during the temperature ramp to 400°C (5 C/minute).

Results and Discussion

Chemisorption of NH_3 on the supported V_2O_5 - WO_3 / TiO_2 / SiO_2 catalyst gave rise to IR peaks characteristic of surface NH_3 species (~1610 and 3100-3500 cm⁻¹) on Lewis acid sites and surface ammonium NH_4^+ species (~1420 and 2600-3000 cm⁻¹) on surface Brønsted acid sites. It was found that nearly all 700 ppm of gas phase NH_3 sent to the catalysts was adsorbed onto the catalysts surface, and that the rate of chemisorption on Lewis and Brønsted sites are

comparable. *Operando* TP-IR-MS spectroscopy revealed that both adsorbed surface NH $_3$ and NH $_4^+$ react with gas phase NO on the model supported $1\% V_2 O_5 - 5\% W O_3 / 30\% Ti O_2 / Si O_2$ catalyst to produce N $_2$ ($T_p \sim 295$ and 392°C), shown in Fig. 1. Between 295 and 320°C, the surface NH $_4^+$ species are predominantly consumed whereas the surface NH $_3$ species concentration remains relatively constant. Interestingly, the concentration of surface NH $_4^+$ species initially slightly increases at ~ 290 °C by the transformation of some surface NH $_4^+$ species to surface NH $_4^+$ species. The slight increase in the concentration surface NH $_4^+$ species coincides with the conversion of surface NH $_4^+$ to gaseous N $_2$ and H $_2$ O products. This suggests that some surface NH $_3$ species become converted to surface NH $_4^+$ species in the presence of moisture. Both types of surface species are continuously consumed in the temperature range of $\sim 320 - 390$ °C. In the 390-400°C temperature window, only surface NH $_3$ species remain and are mostly responsible for N $_5$ formation in the SCR reaction in this temperature range.

Significance

In the lower SCR reaction temperature regime of ~295-320°C, the surface NH_4^+ species on Brønsted acid sites are preferentially consumed and some surface NH_3 species on Lewis acid sites are converted to surface NH_4^+ species in the presence of moisture. In the intermediate temperature regime of ~320-390°C, both surface NH_x species are consumed in the production of N_2 . At the highest temperature regime of ~390-400, the surface NH_3 species are predominantly responsible for N_2 formation. The combined *operando* TP-IR-MS spectroscopy experiment was able to distinguish between the different reactivity of the surface NH_4^+ species on Brønsted acid sites and the surface NH_3 species on Lewis acid sites during the SCR reaction, and revealed the higher reactivity of Bronsted acid surface sites

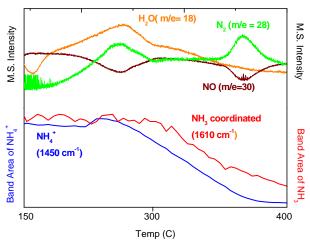


Figure. 1: Operando IR-MS of surface Lewis and Bronsted species and gas phase species during the SCR of NOx with NH_3 .