Epoxidation of propylene over Ag/TS-1 using KOH As Precipitator

Jinxue Wang, Min Liu, Guanfeng Liu, Xinwen Guo*

State Key Lab of Fine Chemicals, School of Chemical Engineering, Department of Catalysis

Chemistry and Engineering, Dalian University of Technology, Dalian 116012, China,

guoxw@dlut.edu.cn

Introduction

Propylene oxide (PO) is a valuable intermediate in organic chemistry. There is an increasing market demand for it. Due to the disadvantages of traditional processes of PO [1], extensive efforts are being made to develop an alternative process for direct epoxidation of propylene using molecular oxygen or other oxidizing agent[2-5]. Haruta and co-workers[5] first announced the discovery of a titania-supported gold catalyst that gave an epoxidation selectivity above 90%. In our group, Ag/TS-1 was reported to be a good catalyst for gas-phase epoxidation of propylene, and found that K₂CO₃ is a suitable precipitator. As well as the Au catalyzed gas-phase epoxidation process does, low conversion of propene and rapid catalyst deactivation are major problems of Ag/TS-1 system. Aiming to find a valid Ag/TS-1 catalyst with high activity and stability, the effect of precipitator and the crystallization time of TS-1 on the catalytic performance of Ag/TS-1 were investigated.

Experimental

TS-1 was synthesized by using TPABr as the template and butylamine as the base, respectively, according to literature[6]. The crystallization time of TS-1(A) is 67 h, and that of TS-1(B) is 120 h. Gas-phase epoxidation of propylene was carried out in a fixed bed, quartz down-flow reactor of 8 mm inner diameter using 0.5 g Ag/TS-1. The typical reaction conditions were as follows: $VC_3H_6: VO_2: VH_2: VN_2 = 1: 3: 3: 12$, WHSV 4000 h⁻¹. The activity of the catalyst was calculated on the basis of the carbon balance.

Results and Discussion

Fig1. shows the results of epoxidation of propylene over Ag/TS-1 catalyst prepared by using K₂CO₃, NaOH and KOH as the precipitator. It's clear that the performance of Ag/TS-1 catalyst

prepared by KOH is more stable than that by K_2CO_3 and NaOH, propylene conversion remains above 1% after 350 minute reaction. When TS-1 (A) is replaced by TS-1 (B) to prepare Ag/TS-1 catalyst, the conversion of propylene reaches 2.9% after 30 minute reaction, and PO selectivity is about 100%.

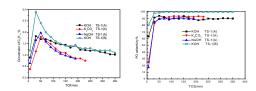


Fig 1. Effect of precipitator on the gas-phase epoxidation of propylene over Ag/TS-1

Conclusion

In summary, Ag/TS-1 catalyst with high activity and stability in the gas-phase epoxidation of propylene was prepared by adjusting precipitator and crystallization time of TS-1, the conversion of propylene is 2.9% and the selectivity to PO is 100%, and after 350 min reaction, the conversion of propylene remains above 1%.

Acknowledgements

The Project was supported by National Natural Science Foundation of China (20573013), by Program for New Century Excellent Talents in University (NCET-04-0268) and by the 111 Project.

References

- 1. McCoy, M., Chem & Eng News, 2001. 79(51): 19.
- 2. Nijhuis, T.A., et al., Ind & Eng Chem Res, 2006. **45**(10): 3447.
- 3. Taylor, B., et al., Gold Bulletin, 2005. 38(3): 133.
- 4. Wang, R.P., et al., Catal Today, 2004. 93-95: 217.
- 5. Hayashi, T., K. Tanaka, and M. Haruta, J of Catal, 1998. 178(2): 566.
- 6. Li, G., et al., Appl Catal A-General, 1999. **185**(1): 11.