BaKCo/CeO₂ catalysts for diesel soot and NO_x abatement

M. Ariela Peralta, M. Alicia Ulla and <u>Carlos A. Querini</u>*

Institute of Research in Catalyst and Petrochemistry, Santa Fe, Santa Fe 3000 (Argentina)

*querini@fiq.unl.edu.ar

Introduction

Soot particles and NO_x are the main pollutants from diesel engines. Good alternatives to abate these contaminants are the use of catalytic filters, which burn the soot particles, and NO_x traps which adsorb the NO_x during normal operation and released them during reduction cycles [1]. We recently studied BaK/CeO_2 catalysts for this application[2]. Barium plays the role of NO_x adsorbent, and K and CeO_2 are a good combination to oxidate soot, due to the high K movility, improving the soot-catalyst contact, and the redox behavior of CeO_2 . The addition of CeO_x improved the behavior of the catalyst as a NO_x trap, since the nitrocompounds formed upon treatment with NO_x resulted to be less stables as compared to barium nitrate formed on BaK/CeO_2 [3]. In this work, the stability of BaKCo catalysts was studied, including thermal stability and stability in presence of water, $NO + O_2$ and SO_2 , all these compounds being present in the diesel exhaust atmosphere. The influence of CeO_x precursors on the catalyst soot combustion activity, stability and behavior as a NO_x trap was also analyzed.

Materials and Methods


The catalysts were prepared by coimpregnation of solutions of $Ba(AcO)_2$ and KNO_3 on the CeO_2 support and calcined at $400\,^{\circ}C$. The cobalt was added to the BaK/CeO_2 catalyst as a solution of either $Co(NO_3)$ or $Co(AcO)_2$ and then calcined at $400\,^{\circ}C$. The catalytic activity was determined by TPO of a tight contact mixture of catalyst and soot. The catalysts were characterized by FTIR, XRD and A.A. The catalysts were treated sequentially at $700\,^{\circ}C$, $800\,^{\circ}C$ and $850\,^{\circ}C$ in dry air in order to evaluate thermal stability, and at $400\,^{\circ}C$ in wet air for evaluating the stability in a humid atmosphere. For the stability in presence of SO_2 the catalysts were treated with $100\,^{\circ}$ ppm of SO_2 at $400\,^{\circ}C$. The behavior as a NO_x trap was studied flowing $NO+O_2$ in a microbalance and ramping up to $490\,^{\circ}C$.

Results and Discussion

The soot oxidation activity is higher for the catalysts prepared using $Co(NO_3)_2$ (Figure 1), most probably due to the presence of KNO_3 with high movility, which was not found in the catalysts prepared from $Co(AcO)_2$ although KNO_3 was also used as a K precursor. Additionally, after treatment of the catalysts with $NO + O_2$, the activities of both catalysts became similar, due to the formation of KNO_3 in the catalyst prepared from $Co(AcO)_2$, as detected by FTIR, these results being consistent with the higher activity when K is as KNO_3 .

The main advantage of the catalyst prepared from $Co(NO_3)_2$ was the unstability of the nitro-compounds formed on the catalyst, which decompose around 350 °C, while the $Ba(NO_3)_2$ formed on the catalysts prepared using $Co(AcO)_2$ was stable at least up to 490°C, as also occurred in the BaK/CeO_2 catalysts. It was suggested that the formation of a $BaCoO_{2.93}$ perovskite, only found in the catalysts prepared with $Co(NO_3)_2$, probably led to the formation of an unstable nitro-compound bound to barium, instead of the stable $Ba(NO_3)_2$ [3]. FTIR spectra carried out on these catalysts also suggested the formation of this type of compound.

The thermal stability up to 850°C was excellent for the catalyst prepared with $Co(AcO)_2$, as seen in Fig. 1, meanwhile for the catalyst prepared with $Co(NO_3)_2$ it was stable only up to 700°C, with a higher lost of K for severe treatments as detected by A.A. The stability in presence of water is good in both catalysts. In presence of 100 ppm of SO_2 the catalysts prepared with $Co(AcO)_2$ is slightly deactivated due to formation of sulfates, as observed by FTIR. On the other hand, the catalyst prepared with $Co(NO_3)_2$ is not deactivated in these conditions, probably due to the formation of an eutectic mixture of lower melting point, as those formed between K_2SO_4 and transition metal oxides including Co oxides [4], thus the higher movility compensating the sulfur poisoning as regard catalytic activity. Results are discussed and explained based on characterization results.

Figure 1. TPO for mixtures of soot and BaKCo/CeO₂ prepared with Co(NO₃)₂ (A) and Co(AcO)₂ (B) with different pretreatments: a) fresh, b) H₂O, c) NO+O₂, d) SO₂ and e) 850°C.

Significance

The BaKCo/CeO $_2$ is a plausible alternative to be used as a catalytic filter and trap in a diesel exhaust, since it presents a good soot combustion activity and it can adsorb NO $_x$. The catalyst prepared with Co(NO $_3$) $_2$ can trap and decompose NOx in the temperature range of soot combustion. Although the thermal stability of this catalyst is lower than the corresponding to the catalyst prepared with Co(AcO) $_2$, it is good enough up to 700°C. Both catalysts present good stability in a humid atmosphere and in presence of SO $_2$ during short expositions. Although eventually the SO $_2$ would poison the catalysts, the deactivation is slower for the catalyst prepared with Co(NO $_3$) $_2$ probably due to a low melting point mixture formed on it.

References

- Heck, R. M., Farrauto, R. J., Catalytic Air Pollution Control, Van Nostrand-Reinhold, New York, 1995.
- Peralta, M.A., Milt, V.G., Cornaglia, L.M. and Querini C.A., J. Catal. 242, 118 (2006).
- 3. Milt, V.G, Querini, C.A. Miró E.E. and Ulla, M.A., *J. Catal* 220, 424 (2003).
- 4. Zhao Z., Obuchi, A., Uchisawa, A., Ogata, A., Kushiyama, S., Chem. Lett. 4, 367 (1998).