Comparison of Pt and Cu promotional effects in CO₂ Hydrogenation over Co/Al₂O₃ Muthu K Gnanamani Wenping Ma, Gary Jacobs, and Burtron H Davis Center for Applied Energy Research, University of Kentucky, 2540 Research Park Dr., Lexington, KY 40511 (USA) *davis@caer.uky.edu #### Introduction Concern for the consequences of emission of CO_2 to the atmosphere has motivated the study of alternatives for the direct reduction of the emission as well as for recycling of CO_2 by its conversion to liquid fuels [1] There are many approaches have been perused among them catalytic hydrogenation to liquid hydrocarbons through carbon monoxide is the most attractive one. One of the early studies by Russell et al. [2] on hydrogenation of carbon dioxide using cobalt catalyst showed an improving oil yield with the addition of copper, potassium and ceria. Later, Okabe et al. [3] prepared Co/SiO_2 catalysts derived from acetate and promoted with Ir and these catalysts showed a high selectivity to CO and CO and CO are from CO as from CO and CO as from CO and CO are suffered by the lower CO partial pressure due to water-gas shift equilibrium constraints, where as with the cobalt catalyst, the shift CO to CO results in the product distribution being shifted from a FT type distribution to almost exclusively methane. Herein, we report the comparison study of CO and CO and CO and CO rate and product distribution of hydrogenation of CO. ### Experimentals The catalysts used in this study, 0.5%Pt-25%Co/Al₂O₃ and 0.5%Cu-25%Co/Al₂O₃ were prepared by a sequential aqueous slurry impregnation method using γ-Al₂O₃ as the support. Two impregnation steps were used to load 25% Co followed by 0.5% Pt (0.5% Cu). Between each step, the catalyst was dried under vacuum in a rotary evaporator at 363 K for 2 h. After the second impregnation/drying step, the catalyst was calcined in flowing air at 623 K for 4 h. BET surface area measurements were conducted using a Micromeritics Tri-Star system. An appropriate amount (~0.25 g) of catalyst sample was taken and slowly heated to 433 K for 10 h under vacuum (~50m Torr). The sample then was transferred to the adsorption unit, and the N₂ adsorption was measured at the boiling temperature of nitrogen (77K). Hydrogenation of CO₂ reactions were conducted in a 1 L CSTR. In a typical experiment, 12-15 g of calcined catalyst (80-140 mesh) were reduced ex-citu using H₂:He (1:3) mixture at 623 K for 10h. The reduced catalyst was transferred to a 1 L CSTR which already contained 310 g of melted Polywax, 3000 under flowing nitrogen. The catalyst was reduced in-situ using pure H₂ (15 slph) for 24 h at 503 K. Three Brooks mass flow controllers were used to control the flow rate of CO₂, H₂, and N₂, Hydrogenation of CO₂ was conducted at 493 K. 1.99 MPa and a constant space velocity of 4.0 SL/h/g catalysts with different H₂:CO₂ ratios. The effluent gases were analyzed online using a Micro GC equipped with a TCD detector, while the liquid products condensed at 273 K and 373 K traps were analyzed separately using a HP 5890 GC with capillary column DB-5 and a HP 5790 GC with Porapak Q packed column. ## **Results and Discussion** On both catalysts, as the H₂/CO₂ ratio decreases CO₂ conversion also decreased but differs in the product selectivity. Cu promotes to form more C₂ and C₃ compare to Pt and as seen from Table 1 that the chain growth probability (α) increased from 0.32 to 0.39 as the H_2/CO_2 decrease. In addition, Cu catalyst shown higher CO_2 conversion compare to Pt under our experimental conditions indicate Cu promotes CO_2 hydrogenation better than the conventional Pt based catalysts. Figure 1 shows the effect of H_2/CO_2 ratio on relative rates of HC (C_n/CH_4) with time on stream of Cu-Co-Al $_2O_3$ catalyst. The relative rates of C_2/CH_4 and C_3/CH_4 increases with decreasing H_2/CO_2 quite considerably where as C_4/CH_4 remains the same. It show that the major product formation from CO_2 hydrogenation is methane (80-93 %) and less amount of C_2 , C_3 , C_4 are only formed irrespective of the catalyst system. This could be explained on the basis that the attainable CO partial pressure rather very low to establish FT regime, which is an important criterion of inhibition of product desorption. Table 1. Effect of H₂:CO₂ ratio on product distribution (T = 498 K, P = 1.99 MPa, SV = 4 slph/g catalyst) | (1 150 12,1 155 111 4,5) (1 51511 8 6 4 4 4 1 5 5) | | | | | | | |--|------------|-------------------|-------|-------|-------|----------------------| | Feed | CO_2 | Selectivity (C %) | | | | | | composition | conversion | | | | | $\alpha (C_2 - C_5)$ | | $(H_2:CO_2:N_2)$ | (%) | CH_4 | C_2 | C_3 | C_4 | | | Pt-Co-Al ₂ O ₃ | | | | | | | | 3:1:0 | 40 | 89.0 | 2.69 | 1.64 | 1.15 | 0.33 | | 2:1:1 | 26.3 | 86.3 | 3.31 | 2.09 | 0.99 | 0.36 | | Cu-Co-Al ₂ O ₃ | | | | | | | | 3:1:0 | 46.3 | 92.2 | 3.8 | 2.4 | 1.2 | 0.32 | | 2:1:1 | 36.2 | 81.9 | 3.6 | 2.5 | 1.1 | 0.39 | | İ | | | | | | | Figure 1. Effect of H₂:CO₂ ratio on rates of HC formation with time-on-stream (T=498 K, P=1.99 MPa, SV=4 slph/g cat, catalyst=0.5%Cu-25%Co/Al₂O₃) #### References - 1. Inui, T., Anpo, M., Izui, K., Yanagida, S., Yamaguchi, T., Advances in chemical conversions for mitigating carbon dioxide, Stud. Surf. Sci. Catal. 114 (1998) - R.N.R. Mulford, W.W. Russell J. Am. Chem. Soc. 74 (1952) 1969. - K. Okabe, H. Yamada, T. Hanaoka, T. Matsuzaki, H. Arakawa, Y. Abe, Chem. Lett. (2001) 904 - T. Riedel, M. Claeys, H. Schulz, G. Schaub, S.-S. Nam, K.-W. Jun, M.-J. Choi, G. Kishan, K.-W. Lee, Appl. Catal. A: Gen. 186 (1999) 201.