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Figure 1.   Diffusion coefficients derived from ab 
initio based kinetic Monte Carlo simulations for 
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ing of metal particles is responsible for catalyst deactivation and the loss of catalyst 
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Figure 2.  DFT calculated energy for the detachment of Ag1 from a 
Ag22 complex bound to the α-Al2O3(0001) surface.

al methods were used to 
r metal atoms and metal 
oxide support and as re-
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ently used to analyze the 

 to be highly sensitive to 
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 in significantly higher 
uld be quite limited. [1] 
information, ab initio 

he surface under reaction 
d alumina surfaces were 
s of water.[1-2]  Partial 
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 is consistent previous 

to show unique 
electronic structures 
which dictate their 
adsorption and 
diffusion over the α-
Al2O3 (0001) surface. 
The presence of 
oxygen, hydroxyl 
and chlorine 
intermediates to the 
mobile Ag fragments were found to enhance their detachment from the parent Ag cluster as 
well as their diffusion along the oxide support. The activation barriers for the diffusion of Ag1-
Ag3 complexes were found to decrease in the following order Ag-Ag > Ag-OH > Ag-Cl. 
 
Significance 
The work provides insights into the fundamental factors that control sintering which play a 
critical role in catalyst deactivation.  
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