Reduction of NO_x by H₂ over Pt-K/Al₂O₃ Lean NO_x Trap catalysts

L. Castoldi, L. Lietti*, P. Forzatti

¹Dipartimento di Energia, Centro NEMAS—Nano Engineered Materials and Surfaces, Politecnico di Milano - p.za Leonardo da Vinci, 32 - 20133 Milano *luca.lietti@polimi.it

Introduction

Lean NO_x Trap (LNT) catalysts are viable catalysts for the abatement of NO_x emissions from lean–burn engines [1]. These systems work under periodic cyclic conditions, alternating lean (NO_x storage) and rich conditions during which the stored NO_x are reduced by a reductant. Although $PtBa/Al_2O_3$ is a typical model catalyst for this application, systems containing K have also been proposed.

In previous studies the reduction with hydrogen of nitrates stored on a model PtBa/Al₂O₃ catalyst has been investigated [2]. It has been shown that the formation of N₂ occurs via a 2-steps in series molecular pathway involving at first the formation of ammonia upon reaction of nitrates with H₂ (step 1), followed by the reaction of NH₃ with residual nitrates to give N₂ (step 2). Step 1 (i.e. the reduction of stored nitrates to NH₃) is faster than step 2, the subsequent reaction of NH₃ with nitrates. Hence this step is rate determining in the formation of N₂, and high NH₃ formation is observed at low temperatures where the reactivity of NH₃ towards nitrates is low. Besides, due to the high reactivity of H₂ towards nitrates, and due to the integral nature of the reactor, an H₂ front develops so that NH₃ which is formed at the front reacts with nitrates stored downstream the H₂ front, if the temperature is high enough. This explain the typical product sequence observed upon regeneration of LNT catalysts, with NH₃ evolution following that of N₂ [2].

Objective of this work is to investigate mechanistic aspects of the reduction process when a $Pt-K/Al_2O_3$ system is employed, i.e. to analyze the effect of the storage component on the reduction of the stored NO_3 .

Materials and Methods

 NO_x have been adsorbed on a model $Pt\text{-}K/Al_2O_3$ catalyst at constant temperatures (350°C), feeding NO (1000ppm) in O_2 (3%) + He. NO_x are stored primarily in the form of nitrates at this temperature [2]. The reduction of the stored NO_x has been investigated in the presence of water (1% v/v) using H_2 or NH_3 as reductants. Temperature Programmed Surface Reaction experiments (H2-TPSR and NH_3 -TPSR) and Isothermal Step Concentration experiments at constant temperature (H2-ISC and NH_3 -ISC) have been carried out.

Results and Discussion

The results obtained upon reduction of the stored NO_x with H_2 at constant temperature (200°C, ISC experiments) show that nitrate species are readily reduced by H_2 ; the reaction is very fast and is limited by the concentration of H_2 . N_2 represents the major reaction product; small amounts of ammonia have also been observed at the reactor outlet, after N_2 evolution. These results are very similar to those obtained in the case of the Pt-Ba/Al₂O₃ catalyst sample [3], but in the case of the K-containing catalyst significantly lower amounts of

 NH_3 have been formed. Accordingly the N_2 selectivity obtained upon reduction of stored nitrates in the case of the Pt- K/Al_2O_3 catalyst sample is much higher than that measured over Pt- Ba/Al_2O_3 .

The reduction of stored nitrates has also been investigated by TPSR experiments as well. In the case of H_2 -TPSR, H_2 consumption is observed starting from 80° C. Ammonia at first and N_2 later on are detected as reaction products. NH_3 formation precedes that of N_2 ; then the NH_3 concentration decreases and N_2 evolution is observed, when the H_2 concentration approaches zero. A second NH_3 peak is seen at high temperatures. Notably, the temperature onset for H_2 consumption (80° C) is higher than that observed in the case of Pt-Ba/Al₂O₃ (near 50- 60° C).

TPSR have also been performed with NH₃. Ammonia itself exhibits a significant activity in the reduction of the stored nitrates, with an onset temperature (near 120°C) which is slightly higher to that of H₂. Complete selectivity to nitrogen is observed in this case. Accordingly these data are in line with the reduction mechanism already proposed in the case of PtBa/Al₂O₃ [2], and supporting the occurrence of a 2-steps in series molecular pathway for the formation of N₂. However, at variance with that observed in the case of the Pt-Ba/Al₂O₃ sample, over the PtK/Al₂O₃ catalyst the temperature onset for H₂ consumption to give NH₃ (step 1) is higher than that of Pt-Ba/Al₂O₃ (80°C vs. 50-60°C) and is very close to the temperature threshold for the NH₃ + nitrate reaction to give N₂ (step 2) (80 vs 120°C). Therefore over PtK/Al₂O₃ NH₃ is readily consumed once formed, and this might explain the higher selectivity to N₂ if compared to PtBa/Al₂O₃.

TPSR experiments have also been carried out by co-feeding H_2+NH_3 . H_2 is consumed starting from 80°C with formation of ammonia. At temperatures slightly above 150°C , H_2 is abruptly consumed: a correspondent NH_3 consumption and N_2 production is observed. Notably, during N_2 production the H_2 concentration is nihil. The onset temperature for NH_3 consumption is higher than that recorded in the NH_3 -TPSR (150°C vs 120°C), suggesting that the presence of H_2 inhibits the reactivity of NH_3 towards nitrates. This has also been confirmed by other data, and points out a competition of H_2 and NH_3 for the activation at the noble metal sites. As a matter of fact, only when the H_2 concentration is nihil ammonia reacts with nitrates and N_2 formation is apparent. This indicates that in the two-steps in series molecular process for N_2 formation, the reaction of NH_3 with nitrates (step 2) is inhibited by the presence of H_2 . We note that the H_2 inhibition of the N_2 formation via step 2 does not imply a low N_2 selectivity during the isothermal reduction of nitrates since NH_3 reacts with NO_8 stored downstream the H_2 front, where the H_2 concentration is nihil. This further confirm the occurrence of the two steps process for N_2 formation; details on these aspects are currently under investigation in our labs.

Significance

A molecular pathway is suggested for the removal of NO_x stored on $Pt-K/Al_2O_3$ catalysts, in which NH_3 is intermediate in N_2 formation. This pathway is in line with previous findings obtained in the case of Ba-based catalysts; besides, a specific inhibition of H_2 on the reactivity of NH_3 has also been pointed out.

References

- 1. H. Shinjoh et al., Appl. Catal. B: Environmental 1998, 15, 189-201
- 2. L. Lietti, I. Nova, P. Forzatti, J. Catal, 257 (2008) 270