The influence of thermal history on the site nature and intrinsic catalytic properties of Co/SiO₂ Fischer-Tropsch catalysts

Agustín Martínez*, Gonzalo Prieto and Raúl Murciano
Instituto de Tecnología Química, Avd. Los Naranjos s/n, Valencia 46022 (Spain)
*amart@itq.upv.es

Introduction

Cobalt-catalyzed Fischer-Tropsch synthesis (FTS) is the preferred catalytic way to convert natural gas or biomass derived syngas into high-quality clean diesel fuels. Despite the early application of Co-based catalysts for long-chain hydrocarbons synthesis, we are currently witnessing an unprecedented research interest on these systems from a more fundamental standpoint. Thus, the impact of kinetically relevant mass transports, the chemical nature and texture of catalytic carriers, promoters and Co⁰ particle size on catalytic activity, selectivity and stability have deserved particular attention in the last two decades [1]. The emerging knowledge is channeling scientists into plausible ways to controllably attain improved Co-based catalysts. Turning catalyst preparation art into a science while preserving an acceptable level of simplicity (for large-scale industrial application) seems an obvious strategy.

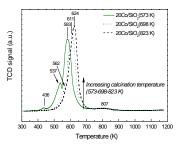
Co-based FTS catalysts are widely prepared by aqueous impregnation of a porous carrier (mostly SiO_2 or Al_2O_3) with an inorganic precursor, with nitrate being the most commonly applied. Afterwards, the catalyst is optionally submitted to air-calcination (at temperatures often arbitrarily chosen in the range of 573-873K) leading to Co_3O_4 , before undergoing an *in*-reactor H_2 -reduction required to generate the active Co^0 sites. Although the influence of calcination conditions (gas environment, final temperature, etc.) on the final catalytic properties have been explored [2], not detailed analysis on the different site population leading to different catalytic rates has been reported up to now.

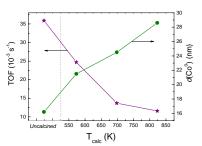
Here we report a detailed study on the influence of the use (or not) and the temperature of air-calcination for $20\%\text{Co/SiO}_2$ catalysts on their site nature, density and intrinsic activity in FTS. Catalysts displaying medium metal dispersions ($d(\text{Co}^0)>10$ nm) are used to avoid masking effects from the recently reported particle-size TOF dependence [3].

Materials and Methods

A series of $20\%\text{Co/SiO}_2$ catalysts has been prepared by incipient wetness impregnation of a low surface area ($146 \text{ m}^2/\text{g}$) and large pore size (19.0 nm) SiO₂ (Fluka) with a Co(NO₃)₂ aqueous solution. Equal portions of the dried (333 K) precursor were calcined in flowing air at increasing temperatures 573-823 K while other aliquot was directly reduced in H₂. Catalysts were characterized by ICP, XRD (including *in situ* reduction monitoring), H₂-TPR, H₂ chemisorption, CO-TPSR, XPS, and LRS, among other techniques. FTS was performed at T=493 K, P=2.0 MPa, H₂/CO=2, and quasi-differential conversion levels (<10%). Catalysts are *in situ* reduced at 673 K for 10 h prior to feeding syngas through the reactor.

Results and Discussion


Increasing calcination temperature (573-823 K) leads to an increase in $d(\text{Co}_3\text{O}_4)$ as ascertained by XRD and to drastic changes in the reduction behavior of this spinel oxide which


progressively switches from a two-step ($Co_3O_4 \rightarrow CoO \rightarrow Co$) to a single-step reduction with raising calcination temperature, as evidenced by H_2 -TPR (Fig. 1). Metal particle size ($d(Co^0)$) in reduced catalysts continuously increases with increasing calcination temperature in the range 21-29 nm (Fig. 2). The directly reduced (uncalcined) catalyst displays the lowest $d(Co^0)=16.2$ nm. In situ XRD-monitored H_2 -reduction confirms the different reductive kinetics observed by H_2 -TPR for the calcined catalysts and shows that reduction evolves through CoO for the uncalcined sample. After reduction at 673 K, all catalysts show, however, high extent of reduction (ER > 95%) and fcc as the predominant metal cobalt phase.

Surprisingly, despite the homogeneity in ER and Co⁰ crystallinity, up to a 3-fold difference in cobalt site-activity (TOF) is found depending on the thermal history of the catalyst (Fig. 2). In line with this, CO-TPSR performed on in situ pre-reduced catalysts reveals significant changes in the temperature-resolved hydrogenation of CO which are related to marked differences in the nature and relative proportion of different metal surface sites.

Significance

Rationalizing the links between the in situ Co⁰ site-characterizations and the changes in the FTS intrinsic activities, determining up to 460% variations in the specific (per Co mass) overall rates, allows to understand the profound effects of the thermal history and points to a simple and scalable way to optimize the performance of Co-based FTS catalysts.

Figure 1. H₂-TPR profiles for 20%Co/SiO₂ catalysts calcined at different temperatures in the range 573-823 K.

Figure 2. Co⁰ particle size and TOF dependence with calcination temperature. The directly reduced (uncalcined) sample is also shown.

References

- . A. Y. Khodakov, W. Chu, P. Fongarland, *Chem. Rev.* 107, 1692 (2007).
- 2. D. I. Enache, B. Rebours, M. Roy-Auberger, R. Revel, J. Catal. 205, 346 (2002).
- 3. G. L. Bezemer, et al., J. Am. Chem. Soc. 128, 3956 (2006).