Detailed kinetic modeling of NO_x storage and reduction with hydrogen as the reducing agent

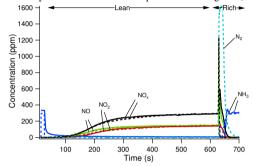
Anna Lindholm¹, Neal W. Currier², Junhui Li², Aleksey Yezerets² and Louise Olsson^{1*}

Competence Centre for Catalysis, Chalmers University of Technology, SE-412 96 Göteborg,

Sweden.

²Cummins Inc., 1900 McKinley Ave, MC 50183, Columbus IN 47201, USA. *louise.olsson@chalmers.se

Introduction


The NO_x storage and reduction technology (NSR), is a promising method to reduce NO_x in lean exhausts from diesel and lean burn gasoline engines [1,2,4]. The catalyst operates in a cyclic manner; NO_x is stored in the catalyst under lean periods (oxygen excess) and under the subsequent fuel rich periods NO_x is released and reduced. A detailed kinetic model of NO_x storage and reduction, in the presence of H_2O and CO_2 , with H_2 as the reducing agent was developed and validated in this study [2]. In addition, ammonia formation is included in the modeling of the rich period.

Materials and Methods

The mechanism for NO_x storage and reduction was derived from flow reactor experiments conducted at 200 - 400 °C over a Pt/Ba/Al monolith sample. The detailed kinetic model is divided into four sub-models: (i) NO oxidation over Pt, (ii) NO_x storage, (iii) NO_x reduction over Pt, and (iv) NO_x regeneration. The kinetic parameters are derived from kinetic gas theory, transition state theory, statistical thermodynamics, thermodynamic constraints, the literature, experiments, or fitted in this work using the least square method. The fitted parameters are given with the 95 % linearised confidence intervals.

Results and Discussion

The NO oxidation mechanism (i) developed by Olsson et al. over Pt/Al₂O₃ [1] was used in this work to model NO oxidation. The sub-model for NO_x storage (ii) is based on our earlier work [1] and is further developed in this study to include high concentrations of CO₂ and H₂O in the feed and also storage of NO_x at low temperatures. Nitrogen oxides are allowed to be stored on two different types of storage sites: BaCO₃ and a second storage site denoted S₃, which can be interpreted as alumina covered to some extent by hydroxyl groups or as a second type of barium sites. The NO_x reduction sub-model (iii) used here was developed earlier over Pt/Si [3]. Additional to the reduction of NO_x into N₂, it describes the formation of NH₃ over Pt. In the sub-model describing the regeneration of NO_x (iv), adsorbed NO_x species react with hydrogen adsorbed on Pt sites. Ammonia oxidation over Pt and reactions between surface species of barium and NH₃ according to ammonia selective catalytic reduction (SCR) chemistry are also incorporated in the regeneration sub-model. The SCR steps between stored NO_x and NH₃ is crucial in order to describe the delay of the ammonia and also the height of the NH₃ peak, simultaneously with the high steady state level of ammonia in the end of the rich period. Figure 1 shows the experimental and simulated results from a NO_x storage and reduction cycle conducted at 400 °C. The model can describe the complete uptake of NO_x in the beginning of the lean period, the NO_x breakthrough, and the slow NO_x storage in the end of the lean period very well as well as the following release and reduction. Furthermore, the ammonia formation predicted by the model fits well with experimental data. In addition, the model can predict the gradual decrease in the storage capacity occurring in lean (210 s)/rich(15s) cycling experiments conducted at 200 - 400 °C. Experiments that were not included in the development of the model were conducted to validate the model. The validation experiments were constituted by short lean (60s) and rich (15s) cycles. The model predicted these experiments well for all temperatures investigated (200, 300 and 400 °C)

Figure 1. Measured (solid) and calculated (dashed) outlet concentrations of NO, NO₂, N₂ and NH₃. The catalyst was exposed to 300 ppm NO, 8 % O₂, 3 % H₂O and 3 % CO₂ during the lean period (10 min) and to 300 ppm NO, 8000 ppm H₂, 3 % H₂O and 3 % CO₂ during the rich period (5 min) at 400 °C. Ar was used as inert balance.

Significance

Several mechanistic studies of the NSR process under various conditions have been published and detailed descriptions, particularly of the storage period, have been proposed [4]. However, very few of the mechanisms presented in the literature have been examined and verified by detailed kinetic models. Before this study [2] there were no detailed kinetic models that describe the storage and regeneration with H_2 , including ammonia formation. In addition, no detailed models were available that considered experiments with high concentrations of CO_2 and H_2O , which is the case in real applications.

Acknowledgements

This work has been performed within the Competence Centre for Catalysis. The authors would like to thank Cummins Inc. for the financial support. One author (Louise Olsson) would also like to acknowledge the Swedish Research Council (Contract: 621-2003-4149 and 621-2006-3706) for additional support.

References

- Olsson, L., Persson H., Fridell, E., Skoglundh, M. and Andersson, B., J. Phys. Chem. B, 105 6895 (2001).
- 2. Lindholm A., Currier N.W., Yezerets A., Olsson L., J. of Catal. 258(1) (2008) 273.
- 3. Lindholm A., Currier N.W., Yezerets A., Olsson L., Top. in Catal. 42-43 83 (2007).
- 4. Epling, W.S., Campbell L.E., Yezerets A., Currier N.W., Parks, *J.E., Catal. Rev.-Sci and Eng.* 46 163 (2004).