Evidence of WGS reaction: Direct H₂ involvement in HC-SCR DeNOx:

Christopher J. Brooks and John M. Pigos

Honda Research Institute USA, Inc.

1381 Kinnear Rd, Suite 116 Columbus, OH 43212

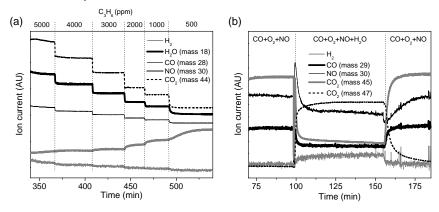
cbrooks@oh.hra.com

Introduction: One class of catalysts that has shown promise for hydrocarbon selective catalytic reduction (HC-SCR) of NO_x to N_2 is metal oxides supported on alumina¹⁻³. However, metal oxide systems still suffer from the limitations of activity at low temperature compared to other catalyst DeNO_x systems. Systemic studies by Hamada have demonstrated that platinum metals at lower temperature can show NO_x reduction activity using such hydrocarbons as propene¹. By combining the activity from precious metal systems with the selectivity of metal oxide systems, it is hoped that a catalyst can be developed that will meet both requirements. In an attempt to better understand the reaction pathway for a newly discovered precious metal/metal oxide DeNO_x catalyst, a study using isotopic gases was conducted.

Materials and Methods

Catalyst samples were prepared by incipient wetness impregnation techniques. Catalyst samples (~ 150 mg) were loaded into a fixed bed-reactor set at 250 °C. Reaction gases were introduced using mass flow controllers, while water was introduced with a temperature controlled saturator. The outlet gas stream was analyzed by a mass spectrometer (Thermo Prolab). Gas concentrations are 500 ppm NO, 1500 ppm CO, 3.5% $\rm H_2O$, 5% $\rm O_2$, 0-5000 ppm $\rm C_3H_6$, balance He.

Results and Discussion


In initial investigations, we observed a large reduction in NO_x concentration (~60 % conversion), when using propene (~500 to 5000 ppm) as a reductant gas in combination with carbon monoxide under steady state $DeNO_x$ conditions (Figure 1a). As expected, the addition of propene produced a mass signal of 18, which is indicative of the formation of water 4 . Additionally, the presence of hydrogen was also detected, corresponding to m/e=2. The H_2 formation can be explained by the water produced by combustion reacting with carbon monoxide to make hydrogen via the water-gas-shift reaction. It is then necessary to determine if the NO reduction is due to additional hydrocarbon reductant, the addition of water or the generation of hydrogen. To help ascertain this, isotopic labeling studies were conducted.

In order to note the effect of water on NO_x reduction directly, we added water into the gas stream by use of a saturator instead of *in situ* formation via hydrocarbon combustion. By using $H_2^{18}O$, it allowed for CO_2 produced from WGS (mass 46) to

be distinguished from CO_2 produced from CO oxidation (mass 44). However, the since NO_2 also has a mass of 46, it was necessary to use ^{13}CO to further distinguish the WGS product CO_2 (mass 47).

Upon addition of water, the level of NO dropped (Figure 1b) as measured as mass 30 in the MS as well as the total NO_x concentration on the NO_x detector. This indicates that water is playing a role in the catalytic reaction to favor the NO_x reduction pathway. More interesting, we see an increase in the in the level of tagged CO_2 (mass 47), which are formed from the isotopic constituents of WGS. The presence of H_2 is also noted consistent with WGS, as well. Conversely, the level of untagged CO_2 (mass 45) is reduced, indicating a reduction in CO combustion, which allows more CO to be available for NO_x reduction.

Conclusions: With the proper tagging of key constituents involve in $HC-NO_x$ reduction, we see evidence of WGS as a side reaction occurring and being involved with NO_x reduction. It is unclear if the decrease in NO_x levels is due to H_2 formed by WGS, competition for CO, or competition for sites with water. Further labeling studies will be conducted to help further resolve aspects of the $DeNO_x$ mechanism for our catalyst.

References

- R. Burch, J.P. Breen and F.C. Meunier, Appl. Catal. B: Environ. 39 (2002) 283, and reference therein.
- 2. M.C. Kung and H.H. Kung, Topics in Catal. 28 (2004) 105.
- 3. D.E. Sparks, P.M. Patterson, G. Jacobs, N. Dogimont, A. Tackett and M. Crocker, Appl. Catal. B: Environ. 65 (2006) 44.
- 4. Z. Liu and S. I. Woo, "Recent Advances in Catalytic DeNO_x Science and Technology", Taylor & Francis Group, LLC.

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.