"Effect of Support on NiMo/MnO-Al₂O₃ catalysts: Application on Hydrodesulphurization of dibenzothiophene". Zeferino Contreras¹, Alida E.Cruz, Julio C. Mogica, Alejandro Alvarez, Alfredo Guevara^{2*}. Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo Km. 4.5, Ciudad Universitaria, C.P. 42184, Pachuca, Hgo., Méx. ¹zefequi@hotmail.com, ²guevaraa@uaeh.edu.mx #### Introduction In order to get diesel and gasoline fuels with ultra-low (10-15 ppm) sulfur content catalysts currently used in hydrodesulphurization processes must be improved. The most used catalyst support in hydrotreating processes is $\gamma\text{-Al}_2\text{O}_3$. This catalyst support offers interesting textural and mechanical properties and it is able to allow formation of well-dispersed MoS2 nanocrystallites decorated with Co or Ni promoter atoms according to Topsoe's model [1]. Nevertheless, interaction between Ni- or Co- atoms and supports form NiAl₂O₄ (CoAl₂O₄) spinels, leading to activity loss. In addition, Al₂O₃ acid character allows coke formation and consequently, catalytic deactivation. We suggest that addition of MnO to Al₂O₃ could change its acid character and consequently increase activity and selectivity of the catalyst. #### Materials and Methods MnO-Al₂O₃ with 5 and 10 %mol of MnO were prepared by sol-gel method. These supports named: MnAl_(5:95) and MnAl_(10:90) have A_{BET} = 392, PCC = 7.6 and 381 m²g⁻¹, PCC = 8.6, respectively. NiMo catalysts were prepared with 12% w/w of MoO₃ and Ni/(Ni+Mo)=0.3 mol. The support was impregnated with an aqueous solution of ammonium heptamolibdate ((NH₄)₆Mo₇O₂₄4H₂O) and nickel nitrate (Ni(NO₃)₂), pH of impregnation solution was adjusted to 9, using an aqueous solution of 0.01 M of NH₄OH [2]. Catalysts were dried at 120 °C for 12h and then calcinated at 550 °C for 4h. Catalysts were activated by sulfuration with a gas flow of 4 Lh⁻¹ of 10% v/v H₂S/H₂ and a liquid flow of 1% DMDS/n-heptane at T=300°C and P=30 bar by 4 h. Catalyst evaluation was performed in a fixed bed (0.05 g of catalysts) reactor at T= 300 °C, P= 30 bar. The reactor was fed with a liquid flow of 0.12 cm³min⁻¹ of 0.037 ml DBT/n-heptane and a gas flow of 35cm³min⁻¹ of H₂. Reaction products were analyzed in a Perkin Elmer AUTOSYSTEM XL chromatograph equipped with ionization of flame FID detector and capillary column ULTRA2 (L= 24 m, I. D. = 0,32 mm). ## **Results and Discussion** Figure 1 shows Raman spectra of NiMo/MnAl $_{(5: 95)}$ and /MnAl $_{(10: 90)}$ calcinated catalysts. Catalysts present bands at 930 and 210 cm $^{-1}$, associated to Mo $_7O_{24}^{6-}$ species and bands at 890, 300 and 312 cm $^{-1}$ attributed to MoO $_4^{2-}$ species [3]. Comparison of these catalysts with Mo/MnAl $_{(10: 90)}$ suggests that Ni allows a polymerization of MoO $_4^{2-}$ to Mo $_7O_{24}^{6-}$ during calcination, probably due to close interaction between Ni and Mo. On the other side, with impregnation at pH=9, the solution precursor is MoO $_4^{2-}$, whereas at pH=7 the solution precursor is Mo $_7O_{24}^{6-}$. These species are transformed to Mo $_8O_{26}^{4-}$ during calcination. In Table 1 can be observed that dry catalysts impregnated at pH=7 are more active than their calcinated homologues, because of this transformation. In contrast, calcinated catalyst impregnated at pH=9, has a higher rate transformation by formation of NiMoO $_3$ clusters during calcination and by a promotional effect of nickel. Since calcinated NiMo/MnAl_(5: 95) catalyst shows a higher rate of HDS than the reference catalyst, we suggest it could be used as an effective catalyst. | Table 1. Selectivity and | I 4 CIIDO CDD | T T 2000C D 201 | C OI | |--------------------------|-----------------------|----------------------------------|-------------| | Table L. Selectivity and | i raies of mid5 of D6 | 5 I . I — 3000°C . I — 30 D2 | ir amer on. | | Catalyst | Treatment | pH
Impregnation | Conversion (%) | Selectivity (%) BP BCH | r (E ⁻⁸
mol ⁻¹
g ⁻¹) | |----------------------------|------------|--------------------|----------------|------------------------|--| | Reference | Calcinated | | 86 | 85 15 | 37 | | Mo/MA(10:90) | Dried | 9 | 29 | 98 2 | 12 | | Mo/MA _(10:90) | Calcinated | 9 | 37 | 84 16 | 16 | | NiMo/MA _(10:90) | Dried | 9 | 48 | 83 17 | 20 | | NiMo/MA _(10:90) | Calcinated | 9 | 80 | 88 12 | 34 | | NiMo/MA _(5:95) | Dried | 9 | 56 | 88 12 | 24 | | NiMo/MA _(5:95) | Calcinated | 9 | 95 | 96 4 | 40 | | NiMo/MA _(10:90) | Dried | 7 | 81 | 89 11 | 35 | | NiMo/MA _(10:90) | Calcinated | 7 | 64 | 91 9 | 27 | | NiMo/MA _(5:95) | Dried | 7 | 76 | 83 17 | 33 | | NiMo/MA _(5:95) | Calcinated | 7 | 65 | 91 9 | 28 | **Figure 1.** Raman spectra of Mo and NiMo supported on MnAl_(5:95) and MnAl_(10:90) catalysts, calcinated and impregnted at pH 9. ### References - 1. Topsøe, H. C. Hydrotreating Catalysis. Alemania: Springer-Verlag(1996). - 2. Guevara A., Bacaud R., Vrinat M. *Appl. Catal.*, 253, 515 (2003). - 3. Hu, H., Bare, S. R. and Wachs, I. E., J. Phys. Chem., 99 (1995) 10897.