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Introduction 

 Supported vanadium oxide (VOx) catalysts, prepared by anchoring VOx species on 
a metal oxide support, show great promise for oxidative dehydrogenation (ODH) of light 
alkanes.  The proper combination of a specific support oxide and a level of coverage of VOx 
surface species can often be used to produce a catalyst system with a desirable activity and 
selectivity.  However, the influence of the support oxide and the coverage of VOx species on 
catalytic performance is not fully understood at a molecular level. 
 
To model propane ODH by supported VOx catalysts, we have calculated geometries and 
relative free energies of a variety of monomeric and dimeric VOx catalyst structures on the 
(001) anatase TiO2 surface and the (010) surface of θ-Al2O3.  Under reaction conditions, we 
found the most stable VOx species to be the bidentate and tridentate monomer structures, in 
which a VO4H3 molecule grafts onto the oxide surface while forming either 2 or 3 V-O-Ti/Al 
bridges.  The corresponding dimer structure is formed by a fusion of two adjacent bidentate 
monomers and formation of a V-O-V bridge.  We then used these models for the catalytic 
active sites to calculate possible reaction pathways for propane ODH.  
 
Computational Methods 

To represent the (001) surface of anatase TiO2, we used a Ti4O16H16 cluster, while 
the (010) surface of θ-Al2O3 was modeled by a Al18O36H18 cluster.  In all calculations 
constrained geometry optimizations were performed, in which the terminal OH and OH2 
groups were fixed.  The terminal O atoms were frozen at experimental positions, and the H 
atoms were frozen at an OH distance of 0.96Å along the direction pointing toward the nearest 
Ti/Al atom in the experimental structure.   
 
All of our calculations utilize the B3LYP/6-31G(*) hybrid density functional method as 
implemented in GAUSSIAN 03.  As we reported in an earlier study of propane ODH [1], the 
6-31G(*) basis set omits f-functions on V in the interest of computational efficiency.  
Transition state structures connecting local energy minima along the ODH reaction pathway 
were optimized using conjugate-gradient techniques implemented in GAUSSIAN 03 as well as 
the nudged elastic band (NEB) method [2].   
 
Results and Discussion 

Our results, in agreement with those of previous studies [3], indicate that the rate-
limiting step of the propane ODH reaction is the initial abstraction of H from the hydrocarbon.  
The reactants are in the singlet spin state, but the transition state (TS) structure for the H 

abstraction step is in the triplet state.  Previous studies did not attempt to identify the spin 
crossing point for this step; however, in Figure 1 we have mapped the H abstraction process to 
find its approximate location.  The distance between the vanadyl O and the H on the secondary 
C of propane is used as the reaction coordinate.  From this graph it is clear that the minimum 
energy reaction path will not pass through the triplet TS; instead, the singlet-triplet crossing 
occurs at an energy that is approximately 6 kcal/mol lower than the TS.  Although Figure 1 
shows only the results for the VOx monomer, the results for the dimer structure are nearly 
identical.  This results in a spin crossing enhancement of the ODH reaction rate. It is especially 
noteworthy, since our calculated triplet TS energy for the VOx/TiO2 dimer is 33.5 kcal/mol, 
somewhat higher than the experimental result of approximately 20 kcal/mol for monolayer 
VOx coverage [4].  The 6 kcal/mol correction results in a value of 27.5 kcal/mol, in much better 
agreement with experiment.  The remaining discrepancy is likely due to the greater activity of 
the VOx/TiO2 monolayer compared to the dimer model used in our calculations. 

Figure 1. Energy vs. reaction coordinate for H abstraction from C3H8 by the VOx/TiO2 

catalytic site.  Energies for the separated reactants are shown for reference. 
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