Bimetallic Ag-Based Catalysts for the Selective Catalytic Reduction of NO_x Using Reformate and Propylene as Reductants

Richard C Ezike and Levi T. Thompson*

Department of Chemical Engineering,

University of Michigan, Ann Arbor, Michigan 48105, United States

*Itt@umich.edu

Introduction

Diesel engines offer significantly higher efficiencies than spark ignition engines; however, managing the emission of NO_x and particulate matter presents unique challenges. The selective catalytic reduction of NO_x (SCR) has been used to convert NO_x in oxygen-rich diesel exhaust streams to N_2 . A number of materials have been demonstrated to be active for this reaction including supported noble metals (e.g. Pt, Pd and Rh), supported precious metals (Ag and Au), and zeolites. However, these catalysts are not sufficiently active at temperatures below $300^{\circ}C$.

The addition of small amounts of hydrogen to the exhaust has been shown to improve performance, in particular for Ag/Al_2O_3 catalysts. In principle, hydrogen would be produced by reforming hydrocarbons in the diesel or biodiesel fuel. Notwithstanding the performance of Ag/Al_2O_3 there is still a need for better performing catalysts. A detailed understanding of the mechanism for NO_x SCR would facilitate development of new, better performing catalysts. The goals of research described in this paper are to evaluate the influence of promoters and co-catalysts on the performance of Ag-based catalysts, and explore the mechanism of SCR over these materials.

Materials and Methods

A series of catalysts containing Pt, Pd or Rh, and Ag on three different supports (Al₂O₃, TiO₂, and CeO₂) was prepared using the incipient wetness method. The metals were added via co-impregnation with aqueous metal salt solutions. The target loadings were 2 wt% for Ag and 0.5% for Pt, Pd or Rh. We focused on performance at temperatures between 200 and 400 °C, and atmospheric pressure. The feed composition consisted of 600 ppm NO, 800 ppm C_3H_6 , 1600 ppm CO, 3200 ppm H_2 , 10% O_2 , 4% H_2O , 8% CO_2 , and He as balance. A NO_x analyzer was employed to measure the NO and NO_2 content. A Varian micro-GC was used to measure the amounts of CO, CO_2 , H_2 , C_3H_6 , N_2 , O_2 , and N_2O in the effluent.

Results and Discussion

All of the Ag-based catalysts were active for NO_x SCR. Unlike most of the catalysts which achieved a maximum NO_x consumption rate at ~300 °C, rates for the Ag-Pt catalysts steadily increased, in particular for the Al_2O_3 and CeO_2 supported materials. This difference in the trends is likely due to differences in the active sites. NO_x consumption rates are summarized in Figure 1, and the reductant conversions are summarized in Table 1. For the Ag-Pt/Al₂O₃ and Ag-Pt/CeO₂ catalysts, all three reductants contributed to the reduction of NO_x from 200-300 °C, but from 300-400 °C, C_3H_6 was the only available reductant, as H_2 and CO were completely exhausted. For the TiO_2 supported catalyst, there was a slight increase in rate from 200-300 °C, largely due to the effect of C_3H_6 , but from 300-400°C, H_2 and CO were

starved and C_3H_6 was primarily burned. This suggests that for the Al_2O_3 and CeO_2 supported catalysts, H_2 assisted C_3H_6 in the reduction below 300 °C and had no effect above this temperature. For the TiO_2 supported catalyst, the effect of H_2 was minimal below 300 °C, and most of the H_2 burned above 300 °C. From the few published studies where CO is co-injected with H_2 and C_3H_6 , it has been reported as having an inhibiting effect, ⁴ although more research is required. In summary, major findings are that between 200-300 °C, the presence of H_2 appeared to enhance NO_x SCR over $Ag-Pt/Al_2O_3$ and $Ag-Pt/CeO_2$ but had minimal effect for $Ag-Pt/TiO_2$, and that reformate is completely consumed by ~300 °C.

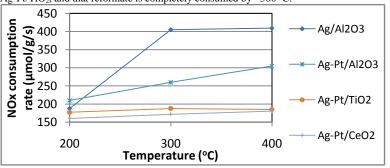


Figure 1: NO_x consumption rates for Ag-Pt-based catalysts- (600 ppm NO, 800 ppm C_3H_6 , 1600 ppm CO, 3200 ppm H_2 , 10% O_2 , 4% H_2O , 8% CO_2 , balance He, GHSV = 60000 1/hr).

Table 1: Total reductant conversion for Ag-Pt-based catalysts (conditions same as in Fig. 1).

Temperature	Ag/Al ₂ O ₃	Ag-Pt/Al ₂ O ₃	Ag-Pt/TiO ₂	Ag-Pt/CeO ₂
200	30	69	30	42
300	64	85	60	89
400	82	92	95	95

Significance

New EPA standards for NO_x emissions that are scheduled to go into effect in 2010 for on-road vehicles and 2015 for off-road vehicles will require a 90% reduction in emitted NO_x compared to 2005 levels.⁵ Achieving these standards will require new after-treatment systems for diesel exhaust. NO_x SCR with hydrocarbons and H_2 has shown promise, especially if the reformate can be produced on-board the vehicle so that a single tank is required.

References

- 1. Burch, R. Catalysis Reviews, 46, 3-4 (2004).
- Satokawa, S, Shibata , J., Shimizu, K., Satsuma, A., Hattori, T. Appl. Catal. B: Env., 42 (2003).
- 3. Satokawa, S. Chem. Lett., (2000).
- 4. Abu-Jrai, A., Tsolakis, A., Megaritis, A. Int. Jour. of Hyd. Eng., 32 (2007).
- 5. Johnson, T. SAE, 2006-01-0030 (2006).