Highly Selective Oxidative Dehydrogenation of Propane on Sub-Nanometer Platinum Clusters Stefan Vajda^{1,2,¶}, Michael J. Pellin³, Jeffrey P. Greeley², Christopher L. Marshall¹, Larry A. Curtiss¹, ^{2,3*}, Gregory A. Ballentine¹, Jeffrey W. Elam⁴, Stephanie Catillon-Mucherie¹, Paul C. Redfern¹, Faisal Mehmood,³ and Peter Zapol¹, ^{2,3}¹ Chemical Sciences and Engineering Division,² Center for Nanoscale Materials, ³ Materials Science Division, ⁴ Energy Systems Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA ⁵Department of Chemical Engineering, School of Engineering & Applied Science, Yale University, 9 Hillhouse Avenue, New Haven, CT 06520, USA ### Introduction In addition to studies of nm size particles, surface chemistry studies on supported atomic clusters demonstrated an extraordinary and often an atom-by-atom tunable catalytic activity of size-preselected clusters supported on single-crystal oxide surfaces. The objective of this work was to identify new catalyst composition for highly activity and selective oxidative dehydrogenation of propane by using highly monodisperse sub-nm size atomic platinum clusters. The applied combination of synthesis techniques allows for ultimate control of both: surface composition, as well as catalytic particle size and composition – prerequisites in producing highly uniform active sites on technologically relevant supports¹⁻⁴. ## Materials and Methods Support preparation: Sintering of catalysts under reaction conditions can lead to the loss of highly size-dependent catalytic activity and selectivity. Our earlier studies on various oxide films showed, that small Pt clusters are exceptionally stable on thin alumina films fabricated by atomic layer deposition (ALD)⁵ These films were used to precoat the anodized aluminum oxide (AAO) membranes prior Pt-cluster deposition as well as to deposit the tin-oxide promoter after Pt-cluster deposition. Production of narrow cluster size distributions: The clusters were produced in a continuous beam laser vaporization cluster source. $^{6, 7}$ A narrow distribution of Pt_{8-10} cluster sizes was preselected isolated utilizing a quadrupole deflector operated in energy filter mode and the clusters soft-landed on one site of the AAO membranes. Catalyst Tests: The tests of Pt₈₋₁₀/Al₂O₃/AAO and Pt₈₋₁₀/SnO/Al₂O₃/AAO were performed under atmospheric pressure in a freestanding AAO (FAAO) flow reactor at temperatures reaching 550 °C and the products formed were analyzed by on-line gas chromatography. ## Results and Discussion Selectivity towards propylene up to 85% was observed, depending temperature, presence of SnO promoter and location of the clusters in the membranes. The observed turn-over frequencies are by up to 2 orders of magnitude higher than those obtained on our reference vanadia based catalysts, as well as VO_x and Pt-based ODH catalysts reported in the literature. The high selectivity (only one or maximum two side-products CO_x and high activity can be explained by the very low activation energy found in experiment and in theoretical calculations for the activation of the C-H bond on the Pt clusters. Catalytic performance did not change during the heat treatment, thus indicating highly stable Pt clusters. **Figure 1.** Selectivity of the Pt_{8-10} /SnO/Al₂O₃/AAO catalysts at 400 °C with Pt clusters on the exit of the membrane reactor. # Significance In summary, highly uniform size-preselected cluster based nanocatalysts were synthesized and their performance tested under realistic reaction conditions. To our knowledge, the work reported here is the first investigation of size-preselected Pt clusters under realistic high temperature catalytic conditions. It has revealed a very high activity of subnanometer Pt-cluster based catalysts for the oxidative dehydrogenation of propane to propylene. Combined with quantum chemical studies, this work has shown that the high activity is due to the under-coordination of the Pt in the clusters and that the clusters favor the scission of C-H bonds relative to C-C or C=C bonds. Some recent work in our laboratory demonstrates that small gold clusters (Au₆₋₁₀) are highly active for propene epoxidation; thus providing further evidence for the unique catalytic properties of sub-nanometer clusters. In the future, size-selected clusters stabilized on appropriate supports with uniform surface chemistry hold great promise for design of new catalytic materials with highly bond-selective chemistry. While it will be a challenging task to scale up the production of size-selected clusters by more conventional chemical methods, but there are very encouraging efforts suggesting that this will ultimately be possible. 10 The work at Argonne National Laboratory was supported by the US Department of Energy, BES-Chemical Sciences, BES-Materials Sciences, and BES-Scientific User Facilities under Contract DE-AC-02-06CH11357 with UChicago Argonne, LLC, Operator of Argonne National Laboratory. S.V. gratefully acknowledges the support by the Air Force Office of Scientific Research. #### References - 1. Bell, A. T., Science 299, 1688 (2003). - Heiz, U., Abbet, S., Häkkinen, H., and Landman, U., Materials Research Society Symposium Proceedings, 648, P9.1.1-P9.1.10. (2001) - 3. Lee, S., Fan, C., Wu, T., and Anderson, S. L., J. Am. Chem. Soc. 126, 5683 (2004) - 4. Valden, M., Lai, X., and Goodman, D.W., Science 281, 1647 (1998) - 5. J. W. Elam, S. M. George, *Chem. Mater.* 15, 1020-1028 (2003) - Vajda, S., Winans, R.E., Elam, J., Pellin, M.J., Seifert, S., Tikhonov, G.Y., and Tomczyk, N.A. Top. Catal. 39, 161 (2006) - 7. Winans, R.E., Vajda, S., Elam, J., Lee, B., Pellin, M.J., Seifert, S., Tikhonov, G.Y., and Tomczyk, N.A. *Top. Catal.* 39, 145 (2006) - 8. Vajda, S., Pellin, M. J., Greeley, J. P., Marshall, C. L., Curtiss, L. A., Ballentine, G. A., Elam, J. W., Catillon-Mucherie, S., Redfern, P. C., Mehmood, F. and P. Zapol, *submitted* - Lee, S., Molina, L. M., López, M. J., Alonso, J. A., Hammer, B., Lee, B., Seifert, S., Winans, R. E., Elam, J. W., Pellin, M. J. and Vajda, S., *Angew. Chem. Int. Ed., in Press* Argo, A.M., Odzak, J.F. Lai, F. S. and Gates, B. C., *Nature* 415, 623 (2002)