From Sub-Nanometer to Nanometer Size Silver Catalysts: The Effect of Catalyst Size in Selective Oxidation of Propene

Stefan Vajda^{1, 2, ¶}, Sungsik Lee¹, Michael J. Pellin³, Jeffrey W. Elam⁴, Byeongdu Lee⁵,
Sönke Seifert⁵, Randall E. Winans⁵, Larry. A. Curtiss¹, Jeff P. Greeley², Paul C. Redfern¹,
Yu Lei¹, Randall J. Meyer⁶, Arantxa Fraile-Rodriguez², Kristian Sell³, Ingo Barke³, Armin Kleibert³, Viola von Oeynhausen³ and Karl-Heinz Meiwes-Broer³
¹Chemical Sciences and Engineering Division,² Center for Nanoscale Materials, ³Materials Science Division, ⁴Energy Systems Division, ⁵X-ray Sciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
Department of Chemical Engineering, University of Illinois at Chicago, Chicago, USA
¬Swiss Light Source, Paul-Scherrer Institute, Willigen, Switzerland
§Fachbereich Physik, Universität Rostock, Universitätsplatz 3, Rostock, Germany
†Department of Chemical Engineering, School of Engineering & Applied Science,

Introduction

In this paper, we present the results of a study of the effect of the size of aluminasupported highly uniform silver catalysts for the direct oxidation of propene to propylene oxide. The smallest clusters studied were triatomic size-preselected clusters, the largest sizepreselected silver nanoparticles measured about 25nm in diameter and 15 nm in height.

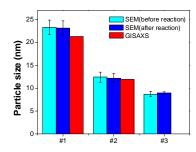
Yale University, 9 Hillhouse Avenue, New Haven, CT, USA

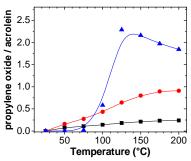
Materials and Methods

Support material: The amorphous alumina film was grown by atomic layer deposition (ALD)¹ on top of naturally oxidized silicon wafers.

Cluster deposition: The Ag₃ clusters were produced in a laser vaporization source, size-preselected in a mass filter – qudrupole deflector assembly and soft-landed on the support. The silver nanoparticles were produced in an ACIS cluster source and size-preselected using an energy filter.³

SEM characterization: The nanosized catalysts were imaged using high-resolution SEM before and after the catalytic tests.


Catalysts tests: In a temperature programmed reactivity tests, the reaction products were monitoring with a mass spectrometer. Simultaneous X-ray scattering was used to monitor the size of the catalyst during the reaction.


Results and Discussion

Silver cluster based catalyst tested in the size range of 8-24 nm, show increased selectivity towards propylene oxide production with increasing size; however at the expense of a decreased activity. Typical temperature-dependent reactivity data for a silver catalyst of various sizes is shown in Figure 1 below. The comparison of surface X-ray scattering data and the SEM performed before and after the catalytic tests reaching 200 $^{\circ}$ C and up to 8 hours in duration confirmed stable, sintering-resistant silver nanoparticles.

However, the highest catalytic activity and the highest selectivity towards propylene oxide formation was observed on Ag₃ clusters and 2 nm size nanoparticles assembled from Ag₃ clusters – a surprising results not expected from the tendency of the evolution of catalytic pro-

perties of particles between 5 to 25 nm in size.

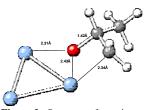


Figure 1. Left: Size of the tested nanocatalysts determined by high SEM before and after the catalytic tests and from synchrotron grazing incidence small angle X-ray scattering. Right: Selectivity for three cluster sizes as the ratio between propylene-oxide and acrolein produced by 25 nm, 13nm and 8 nm clusters (squares, circles and triangles, respectively).

DFT calculations reveal that the high activity of Ag_3 clusters towards propylene oxide formation is caused by a very low activation barrier for this reaction channel on the small clusters (Figure 2.).

Significance

Strongly size-dependent activity and selectivity of silver nanocatalysts was observed in the epoxidation of propene. The results underline the important role of undercoordinated metal atoms in the sub-nanometer silver clusters which result in unexpected high activity as well as selectivity.

Figure 2. Structure of reaction intermediate.

The work at Argonne National Laboratory was supported by the US Department of Energy, BES-Chemical Sciences, BES-Materials Sciences, and BES-Scientific User Facilities under Contract DE-AC-02-06CH11357 with UChicago Argonne, LLC, Operator of Argonne National Laboratory. Y.L. and R. M gratefully acknowledge funding for this work from the American Chemical Society Petroleum Research Fund. S.V. gratefully acknowledges the support by the Air Force Office of Scientific Research.

References

- 1. Elam, J. W., George, S. M., Chem. Mater. 15, 1020-1028 (2003)
- 2. Vajda, S., Winans, R.E., Elam, J., Pellin, M.J., Seifert, S., Tikhonov, G.Y., and Tomczyk, N.A. *Top. Catal.* 39, 161 (2006)
- 3. Methling, R.-P., Senz, V., Klinkenberg, E.-D., Diederich, Th., Tiggesbäumker, J., Holzhüter, Bansmann, G.J., and Meiwes-Broer, K.H., *Europ. Phys. J. D.* 16, 173 (2001)
- 4. Lee, S. et al, to be submitted
- 5. Lei, Y. et al., to be submitted